화학공학소재연구정보센터
Bioresource Technology, Vol.116, 471-476, 2012
Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density
The optimal conditions for the torrefaction of mixed softwood were investigated by response surface methodology. This showed that the chemical composition of torrefied biomass was influenced by the severity factor of torrefaction. The lignin content in the torrefied biomass increased with the SF, while holocellulose content decreased. Similarly, the carbon content energy value of torrefied biomass ranged from 19.31 to 22.12 MJ/kg increased from 50.79 to 57.36%, while the hydrogen and oxygen contents decreased. The energy value of torrefied biomass ranged from 19.31 to 22.12 MJ/kg. This implied that the energy contained in the torrefied biomass increased by 4-19%, when compared with the untreated biomass. The energy value and weight loss in biomass slowly increased as the SF increased up until 6.12; and then dramatically increased as the SF increased further from 6.12 to 7.0. However, the energy yield started decreasing at SF value higher than 6.12; and the highest energy yield was obtained at low SF. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.