화학공학소재연구정보센터
Bioresource Technology, Vol.107, 25-32, 2012
Novel modular endo-beta-1,4-xylanase with transglycosylation activity from Cellulosimicrobium sp strain HY-13 that is homologous to inverting GH family 6 enzymes
The gene (2304-bp) encoding a novel xylanolytic enzyme (XylK2) with a catalytic domain, which is 70% identical to that of Cellulomonas flavigena DSM 20109 GH6 beta-1,4-cellobiohydrolase, was identified from an earthworm (Eisenia fetida)-symbiotic bacterium, Cellulosimicrobium sp. strain HY-13. The enzyme consisted of an N-terminal catalytic GH6-like domain, a fibronectin type 3 (Fn3) domain, and a C-terminal carbohydrate-binding module 2 (CBM 2). XylK2 Delta Fn3-CBM 2 displayed high transferase activity (788.3 IU mg(-1)) toward p-nitrophenyl (PNP) cellobioside, but did not degrade xylobiose, glucose-based materials, or other PNP-sugar derivatives. Birchwood xylan was degraded by XylK2 Delta Fn3-CBM 2 to xylobiose (59.2%) and xylotriose (40.8%). The transglycosylation activity of the enzyme, which enabled the formation of xylobiose (33.6%) and xylotriose (66.4%) from the hydrolysis of xylotriose, indicates that it is not an inverting enzyme but a retaining enzyme. The endo-beta-1,4-xylanase activity of XylK2 Delta Fn3-CBM 2 increased significantly by approximately 2.0-fold in the presence of 50 mM xylobiose. (C) 2011 Elsevier Ltd. All rights reserved.