화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.6, 1000-1005, December, 1997
참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제2보)-습식법에 의한 Hydroxyapatite 소결체의 특성-
Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(II) - The Sintering Properties of Hydroxyapatite Treated with Wet Milling Process -
초록
참치 뼈로부터 추출한 hydroxyapatite[Ca10(PO4)6 (OH)2]를 습식법으로 분쇄한 후 여러 온도로 고상반응시킨 세라믹 소결체의 특성을 고찰하였다. Hydroxyapatite소결체의 밀도는 1350℃에서 약 2.93g/㎤으로서 이론치의 3.21g/㎤과 유사하였다. 1300℃ 이하의 소결온도에서는 hydroxyapatite가 결정상으로 나타났으며, 온도가 증가할수록 hydroxyapatite의 분해에 따른 whitlockite[Ca 3(PO4)2]의 결정상이 관찰되었다. 소결채의 미세구조는 발달된 입계들 사이에 폐기공들이 분포하였다. 1350℃의 소결시편 평균강도는 58MPa로 나타나 관절연골(articular cartilage)의 최대강도인 40MPa보다 우수한 것으로 나타났다.
The properties of ceramics by solid-state reaction with hydroxyapatite[Ca10(PO4)6 (OH)2] , which was isolated from tuna bone by wet milling process were investigated. The bulk density 2.93g/㎤ at 1350℃ was close to the calculated density 3.21g/㎤. On X-ray measurements, the major phases were identified as hydroxyapatite at below 1300℃, but the whitlockite [Ca3(PO4)2] phases were appeared due to a decomposition of hydroxyapatite with temperature. The microstructures of sintering specimens were shown as small closed pores between grain boundaries. The mean bending strength of the sintered hydroxyapatite by solid-state reaction is about 58 MPa and this value is higher than that of the articular cartilage maximum strength, 40 MPa.
  1. Paschalis RH, "Physicochemical Studies of Biologically Important Calcium Phosphate," Ph.D. State University of New York at Buffalo (1993)
  2. Albee FH, Ann. Surg., 71, 32 (1920)
  3. Hench LL, "Bioactive Ceramics, Bioceramics," In Materials Characteristics Versus in vivo Behavior, eds., P. Ducheyne and J. Lemons, Annals of NY Academy of Science, 523, 54 (1984)
  4. Hench LL, Wilson J, "An Introduction to Bioceramics," In Advanced Series in Ceramics, Vol. 1. ed. L.L. Hench & J. Wilson, World Scientific, pp. 7 ~ 8 (1993)
  5. 이창국, 최진삼, 전유진, 변회국, 김세권, 한국수산학회지, 30, 652 (1977)
  6. Kokubo T, Ito S, Shigenmatsu M, Yamamura T, J. Mater. Sci., 20, 2001 (1985) 
  7. Andrews AI, "Ceramic Glazes, Bodies, and Enamels, Chapter VI. and The Compounding of Raw Glaszes and the Calculation of Formula to Recipe and Recipe to Formula, Chapter VII," In Ceramic Test andn Calculations. John Wiley & Sons, Inc., NY. pp. 51 ~ 71 (1957)
  8. Grenble DE, Katz JL, Dunn KL, Gilmore RS, Murty KL, J. Biomed. Mater. Res., 6, 221 (1972) 
  9. LeGeros RZ, "Materials for Bone Repair, Augmentation and Implant Coatings," In Proceeding of the International Seminar of Orthopedic Res., Nagoya, ed. S. Niwa, (Spring-Verlag) (1990)
  10. Kempson E, Annals of the Rheumatic Diseases, 41, 508 (1982)
  11. Audekercke RV, Martens M, "Mechanical Properties of Cancellous Bone, in Natural and Living Biomaterials," ed. G.W. Hastings and P. Ducheyne(CRC Press, Boca Raton, FL), pp. 89 ~ 98 (1984)