화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.6, 920-926, December, 1997
촉매를 이용한 폐고분자 물질의 자원화-촉매글리콜분해에 의한 연질 폴리우레탄폼 폐기물의 재활용-
Catalytic Recycling of Waste Polymer - Recycling of Flexible Polyurethane Foam Wastes by Catalytic Glycolysis-
초록
촉매 글리콜분해공정은 에스테르 교환반응에 의해 생성된 폴리올과 carbamate 화합물을 회수하여 폴리우레탄 폼 제조에 이용하는 화학적 재활용 방법이다. 본 연구에서는 폴리우레탄 폼을 분해하기 위해 ethyleneglycol, diethyleneglycol, 1,4-butanediol을 사용하였으며, 촉매로는 금속 acetate류를 사용하였다. 촉매글리콜분해 반응온도는 180∼200℃ 범위에서 수행되었다. 반응속도는 반응시간 경과에 따른 생성물의 점도를 측정하여 조사하였으며, IR과 GPC분석을 통하여 분해 생성물의 종류와 분자량 분포를 조사하였다. 촉매 글리콜분해는 높은 온도에서 ethyleneglycol을 사용했을 때 잘되었다. K, Na, Tl acetate 촉매의 활성이 좋았으며, 생성물들은 비교적 높은 함량의 아민화합물과 carbamate화합물을 함유하고 있었다. Sr acetate와 Quinoline 촉매의 경우 반응은 다소 느리지만 폴리올의 함량이 높았고 부생성물의 함량이 낮았다. 회수폴리올을 20wt%까지 첨가하여 제조한 폴리우레탄 폼의 물성이 버진 폴리올만을 사용하여 제조한 폼에 비해 인장강도, 경도, 인열강도, 압축강도 등이 좋았다.
The catalytic glycolysis process is the method of chemical recycling where the polyol and carbamate compounds recovered by transesterification reaction are reused to produce new polyurethane foams. In this work, ethylene glycol, diethylene glycol, and 1,4-butanediol were used to decompose polyurethane foams and various metallic acetates were provided as catalysts. The catalytic glycolsis of polyurethane foams was taken place in the reaction temperature of 180∼200℃. The reaction rates of catalytic glycolysis reaction were indicated by the viscosity of the reaction products at different reaction times. IR and GPC analysis showed the types and the molecular weight distributions of the products. The catalytic glycolysis was profitable for using ethyleneglycol at high temperature. The activities of the catalysts are suitable for K, Na, Tl acetate, and the products are composed of comparatively high-contained amine compounds and carbamate compounds. In the case of Sr acetate and Quinoline, the reaction rate was somewhat low. However, the content of polyol was high and the content of the side-products was low. The foams which were prepared by blending up to 20wt% of recovered polyol with virgin polyols showed better physical properties in tensile strength, hardness, tear strength, and compressive strength compared to those of polyurethane foams from virgin polyol.
  1. Allen RC, Cloutier OH, Elastomerics, Oct., 30 (1991)
  2. Rasshofer W, Liman U, Wagner J, Rubber World, Sep., 20 (1992)
  3. Modesti M, Simioni F, Munari R, Baldoin N, J. React. Functional Polym., 26, 157 (1995) 
  4. Modesti M, Simioni F, Rienzi SA, J. Elastomers Plast., 24, 288 (1992)
  5. Simioni F, Bisello S, J. Cell. Polym., 2, 285 (1983)
  6. Modesti M, Bisello S, Tavan M, J. Cell. Polym., 2, 281 (1983)
  7. Morozov YL, Khabarova EV, Alter YM, Tkachuk AP, Gorman S, Polyurethanes World Congress, 10, 108 (1993)
  8. Bauer G, Polyurethanes World Congress, 9, 24 (1991)
  9. Imai Y, Shuchang X, Enomoto K, Polyurethanes World Congress, 10, 108 (1993)
  10. Modesti M, Simioni F, Polym. Eng. Sci., 36(17), 2173 (1996) 
  11. Cambell GA, Meluch WC, Environ. Sci. Technol., 10, 182 (1976) 
  12. Enayati N, Riahi A, Topac H, Arastoopour H, Ivanov G, Shutov F, Polyurethanes World Congress, 10, 103 (1993)