화학공학소재연구정보센터
Journal of Materials Science, Vol.49, No.12, 4261-4269, 2014
Hydroxyapatite starting from calcium carbonate and orthophosphoric acid: synthesis, characterization, and applications
Hydroxyapatite [Ca-10(PO4)(6)(OH)(2)], Ca-HA, is the emblematic mineral phase of bones, and is known for its complexity and difficult to reproduce chemical synthesis. Among the routes developed for obtaining this calcium phosphate, the so-called double-decomposition method is well described and often utilized. However, the Ca-HA synthesized by this way forms a larger mass of ammonium nitrate by-product than the desired product itself. Pure Ca-HA for orthopedic or dental applications usually uses thermal treatment to eliminate residual nitrogen compounds by releasing them in the atmosphere. Contemporary sol-gel methods currently in fashion produce even more degradation products including solvents and precursor organics. We now report on a green synthesis procedure which makes pure Ca-HA with minimum by-product. The synthesis calls for reacting phosphoric acid with calcium carbonate in water suspension to form a Ca-HA gel of fine particles. This gel can be filtered and the solids recovered, dried, and sintered, but can also be used as-is for environmental applications such as heavy metal ions or textile dye removal from polluted waste streams. This green Ca-HA has been used to trap heavy metals in flue gases and in municipal waste water treatment plants. This low-cost and low-environmental impact material can be developed for medical use because of its absence of impurities, and in catalytic productions for remediation of many environmental problems. Recent results show Ca-HA can also serve in reforming biogas compositions into useful products, after deposition of selected metal elements. Some of these results will be communicated in this paper.