화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.5, 749-755, October, 1997
몰리브덴인산화물 촉매에 의한 메틸피라진의 가암모니아 산화반응
Ammoxidation of Methylpyrazine over Molybdenum Phosphate Catalyst
초록
몰리브덴산암모늄과 인산의 반응으로 P/Mo=0.6의 비율을 가진 몰리브덴인산화물을 제조하고 이를 촉매로 사용하여 메틸피라진의 가암모니아 산화반응에 대한 메틸피라진, 산소, 암모니아의 각각의 분압과 반응온도 등의 반응변수의 영향을 살펴보았다. 표준실험조건하의 반응에서 300시간까지의 촉매활성은 안전상태를 유지하였다. 안정화 상태에서의 메틸피라진의 가암모니아 산화반응 속도식은 -r=kPMPPNH30PO2γ(γ= 2.2; 1.3 ≤ PO2(kPa) ≤ 4)으로 메틸피라진에 대해서는 1차, 암모니아에 대해서는 0차, 산소에 대해서는 분압 4kPa이하에서 2.2차로 나타났다. 623K이하의 반응온도 하에서의 겉보기 활성화에너지는 29.6kcal/mol이었다. 메탈피리진의 주생성물은 시아노피라진으로서 선택도는 전환율에 관계없이 항상 90%이상을 유지하였다.
Molybdenum phosphate(P/Mo = 0.6) has been synthesized with ammonium molybdate and phosphoric acid under aqueous solution. The kinetics of the ammoxidation of methylpyrazine over molybdenum phosphate catalyst was investigated with the variation of reaction temperature and partial pressure of methylpyrazine, oxygen and ammonia, respectively at atmospheric pressure. The catalytic activity was constant for 300hrs operation under our experimental conditions. Under the steady-state condition, the rate equation of methylpyrazine was shown as -r=kPMPPNH30PO2γ(γ= 2.2; 1.3 ≤ PO2(kPa) ≤ 4). The apparent activation energy was 29.6kcal/mol below 623K. The main product obtained in the ammoxidation of methypyrazine is cyanopyrazine whose selectively was kept always over 90% regardless of conversion.
  1. Rizayev RG, Mademov EA, Vislovskii VP, Sheinin VE, Appl. Catal. A: Gen., 83, 103 (1992) 
  2. Pujado PR, Vora BV, Krueding AP, Hydrocarb. Process., 56, 169 (1977)
  3. Ikada T, Oga J, Chem. Eng., Nov., 53 (1971)
  4. Gelbein AP, Sze MC, Whitehead RT, Hydrocarb. Process., 52, 209 (1973)
  5. Padustian JE, Puzio JF, Stavropoulos N, Sze MC, Chemtech., 174 (1981)
  6. Prasad R, Kar AK, Ind. Eng. Chem. Process Des. Dev., 15, 170 (1976) 
  7. Anderson A, Lundin ST, J. Catal., 58, 383 (1979) 
  8. Anderson A, Lundin ST, J. Catal., 65, 9 (1980) 
  9. Anderson A, J. Catal., 69, 465 (1981) 
  10. Anderson A, J. Catal., 76, 144 (1982) 
  11. Anderson A, J. Catal., 100, 414 (1986) 
  12. Anderson A, Bovin JO, Walter P, J. Catal., 98, 204 (1986) 
  13. Reddy BM, Subrahmanyam M, J. Chem. Soc.-Chem. Commun., 940 (1988)
  14. Reddy BN, Reddy BM, Subrahmanyam M, J. Chem. Soc.-Chem. Commun., 33 (1988)
  15. Martin A, Lucke B, Seeboth H, Ladwig G, Appl. Catal., 49, 205 (1989) 
  16. Suvorov BV, Belova NA, Gostev VI, Kinet. Catal., 34, 261 (1993)
  17. Suvorov BV, Vorobev PB, Mikhailovskaya TP, Kinet. Catal., 34, 265 (1993)
  18. Kushner S, Dalalian H, Sanjurjo JL, Bach FL, Safir SR, Smith VK, Williams JH, J. Am. Chem. Soc., 74, 3617 (1952) 
  19. Shizimu S, Catalysis, 35, 22 (1993)
  20. Lee YK, Park SE, Kwon YS, U.S. Patent, 4,966,970 (1990)
  21. Forni L, Appl. Catal., 37, 305 (1988) 
  22. Forni L, Oliva C, Rebuscini C, J. Chem. Soc.-Faraday Trans., 84, 2397 (1988) 
  23. Forni L, Toscano M, Pollesel P, J. Catal., 130, 392 (1991) 
  24. Kwon YS, Park SE, Lee YK, J. Korean Chem. Soc., 34, 445 (1990)
  25. Walton J, Eng. Sci. Data Item, 11977
  26. Walton J, Eng. Sci. Data Item, 77019
  27. Shin CH, Chang TS, Cho DH, Lee DK, Lee YK, HWAHAK KONGHAK, 35(2), 270 (1997)
  28. Shin CH, Chang TS, Cho DH, Lee DK, Lee YK, HWAHAK KONGHAK, 35(4), 490 (1997)
  29. Shin CH, Chang TS, Cho DH, Lee DK, Lee YK, in preparation
  30. Gut G, Dirr G, Chem. Eng. Sci., 29, 443 (1974)