화학공학소재연구정보센터
Inorganic Chemistry, Vol.53, No.5, 2516-2520, 2014
Controlling Binding Dynamics of Corrin-Based Chemosensors for Cyanide
This paper describes a strategy to control the binding dynamics between cyanide and aquacyanocorrinoids on the molecular level. Aquacyanocorrinoids represent an important class of chemosensors and convert upon cyanide coordination to the corresponding dicyano derivatives. Structure reactivity relationships were investigated for the first time by synthesizing and studying three diastereomerically pure aquacyanocorrinoids differing either in the configuration of the axially bound ligands or in the nature of remote side chains located at the periphery of the corrin macrocycle. Substitution of cobalt-coordinated water with cyanide was investigated using stopped-flow measurements between 5 and 30 degrees C, and second order rate constants and activation parameters were determined. In particular, it is demonstrated that the binding kinetics depend not only on (i) the configuration at the central metal center but also on (ii) the remote structural modifications of the macrocycle.