화학공학소재연구정보센터
Inorganic Chemistry, Vol.52, No.23, 13509-13520, 2013
Copper(I) Complexes Based on Five-Membered (PN)-N-boolean AND Heterocycles: Structural Diversity Linked to Exciting Luminescence Properties
Bridging (PN)-N-boolean AND ligands bearing five-membered heterocyclic moieties such as tetrazoles, 1,2,4-triazoles, oxadiazoles, thiadiazoles, and oxazoles have been investigated regarding their complexation behavior with copper(I) iodide as metal salts. Different complex structures were found, depending either on the ligand itself or on the ligand-to-metal ratios used in the complexation reaction. Two different kinds of luminescent dinuclear complex structures and a kind of tetranuclear complex structure were revealed by X-ray single-crystal analyses and were further investigated for their photophysical properties. The emission maxima of these complexes are in the blue to yellow region of the visible spectrum for the dinuclear complexes and in the yellow to orange region for the tetranuclear complexes. Further investigations using density functional theory (DFT) show that the highest occupied molecular orbital (HOMO) is located mainly on the metal halide cores, while the lowest unoccupied molecular orbital (LUMO) resides mostly in the ligand sphere of the complexes. The emission properties were further examined in different environments such as neat powders, neat films, PMMA matrices, or dichloromethane solutions, revealing the high potential of these complexes for their application in organic light-emitting diodes. Especially complexes with 1,2,4-triazole moieties feature emission maxima in the blue region of the visible spectrum and quantum yields up to 95% together with short decay times of about 1-4 mu s and are therefore promising candidates for blue-emitting materials in OLEDs.