화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.53, No.2, 701-707, 2014
Engineering UiO-66-NH2 for Toxic Gas Removal
The metal organic framework UiO-66-NH2 was synthesized in a scaled batch of approximately 100 g. The material was then pressed into small pellets at pressures ranging from 5000 to 100000 psi to determine the effects on porosity and crystal structure. Nitrogen isotherm data and powder X-ray diffraction data indicate that the structure remains intact up to 25000 psi, with only a slight decrease in surface area. The structure exhibits significant degradation at pressures above 25000 psi. Subsequently, the powder was pressed at 5000 psi and then crushed and sieved into 20 X 40 mesh granules for evaluation against ammonia and cyanogen chloride in a breakthrough system simulating individual protection filters and respirator cartridges. The MOF showed capacity similar to that of a broad-spectrum carbon for both ammonia and cyanogen chloride; however, the breakthrough times, especially for cyanogen chloride, were dramatically reduced, likely as a result of mass-transfer limitations from the completely microporous MOF.