IEEE Transactions on Automatic Control, Vol.59, No.4, 905-920, 2014
Accelerated Dual Descent for Network Flow Optimization
We present a fast distributed solution to the convex network flow optimization problem. Our approach uses a family of dual descent algorithms that approximate the Newton direction to achieve faster convergence rates than existing distributed methods. The approximate Newton directions are obtained through matrix splitting techniques and sparse Taylor approximations of the inverse Hessian. We couple this descent direction with a distributed line search algorithm which requires the same information as our descent direction to compute. We show that, similarly to conventional Newton methods, the proposed algorithm exhibits super-linear convergence within a neighborhood of the optimal value. Numerical experiments corroborate that convergence times are between one to two orders of magnitude faster than existing distributed optimization methods. A connection with recent developments that use consensus to compute approximate Newton directions is also presented.