Energy Policy, Vol.46, 473-488, 2012
Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles
A parametric analysis is used to examine the supply demand interactions between the US light-duty vehicle ([DV) fleet, its fuels, and the corresponding primary energy sources through 2050. The analysis emphasizes competition between conventional internal combustion engine (ICE) vehicles, including hybrids, and electric vehicles (EVs), represented by both plug-in hybrid and battery electric vehicles. We find that EV market penetration could double relative to our baseline case with policies to extend consumers' effective payback period to 7 years. EVs can also reduce per vehicle petroleum consumption by up to 5% with opportunities to increase that fraction at higher adoption rates. However, EVs have limited ability to reduce [DV greenhouse gas (GHG) emissions with the current energy source mix. Alone, EVs cannot drive compliance with the most aggressive GHG emission reduction targets, even if the electricity grid shifts towards natural gas powered sources. Since ICEs will dominate the LDV fleet for up to 40 years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions and petroleum consumption over this time. Specifically, achieving fleet average efficiencies of 72 mpg or greater can reduce average GHG emissions by 70% and average petroleum consumption by 81%. (C) 2012 Elsevier Ltd. All rights reserved.