화학공학소재연구정보센터
Energy Policy, Vol.45, 606-613, 2012
Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market
As a part of a program to explore technological options for the transition to a renewable energy future, we present simulations for 100% renewable energy systems to meet actual hourly electricity demand in the five states and one territory spanned by the Australian National Electricity Market (NEM) in 2010. The system is based on commercially available technologies: concentrating solar thermal (CST) power with thermal storage, wind, photovoltaic (PV), existing hydro and biofuelled gas turbines. Hourly solar and wind generation data are derived from satellite observations, weather stations, and actual wind farm outputs. Together CST and PV contribute about half of total annual electrical energy supply. A range of 100% renewable energy systems for the NEM are found to be technically feasible and meet the NEM reliability standard. The principal challenge is meeting peak demand on winter evenings following overcast days when CST storage is partially charged and sometimes wind speeds are low. The model handles these circumstances by combinations of an increased number of gas turbines and reductions in winter peak demand. There is no need for conventional base-load power plants. The important parameter is the reliability of the whole supply-demand system, not the reliability of particular types of power plants. (C) 2012 Elsevier Ltd. All rights reserved.