Energy & Fuels, Vol.28, No.1, 542-548, 2014
Two-Step Delignification of Miscanthus To Enhance Enzymatic Hydrolysis: Aqueous Ammonia Followed by Sodium Hydroxide and Oxidants
Pretreatment of miscanthus is essential for enzymatic production of sugars to yield bioethanol. A two-step process using 10 wt % aqueous ammonia in the first step is followed by 1 wt % sodium hydroxide (with or without oxygen or 1 wt % hydrogen peroxide) in the second step. The first step retains about 90% of the cellulose and about 67% of the hemicellulose in the solid while removing about 62% of the lignin. Both steps together achieve 83-90% delignification. Subsequent enzymatic conversion to fermentable sugars is close to 90% after 96 h. While an oxidant does not significantly increase delignification, it has a favorable effect on saccharification of the recovered solid. Infrared spectroscopy, X-ray diffraction, and two-dimensional nuclear magnetic resonance spectroscopy provide data concerning the chemical composition of the recovered solid. Inclusion of an oxidant to the pretreatment breaks beta-O-4'-linked aryl ether bonds of the remaining lignin in the recovered solid.