Current Microbiology, Vol.68, No.3, 293-300, 2014
Codon Optimization Enhances Protein Expression of Bombyx mori Nucleopolyhedrovirus DNA Polymerase in E-coli
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major viral agent that causes deadly grasserie disease in silkworms, while BmNPV DNA polymerase (BmNPV-pol), encoded by ORF53 gene, plays a central role in viral DNA replication. Efficacy studies of BmNPV-POL are limited because of poor heterologous protein expression in E. coli. Here, we redesigned the BmNPV-pol to preferentially match codon frequencies of E. coli without altering the amino acid sequence. Following de novo synthesis, codon-optimized BmNPV-pol (co-BmNPV-pol) gene was cloned into pET32a and pGEX-4T-2 vector. The expression of co-BmNPV-POL in E. coli was significantly increased when BmNPV-POL was fused with GST protein rather than a His-tag. The co-BmNPV-POL fusion proteins were isolated using GST affinity chromatography and Mono Q iron exchange chromatography. Protein purity and identity were confirmed by western blot and MALDI-TOF analyses. The biological activity of purified proteins was measured on a poly(dA)/oligo(dT) primer/template. The specific polymerasing activity of the recombinant BmNPV-POL was 6,329 units/mg at optimal conditions. Thus, a large amount of purified protein as a soluble form with high activity would provide many benefits for the functional research and application of BmNPV-POL.