화학공학소재연구정보센터
Catalysis Today, Vol.215, 176-185, 2013
Enabling small-scale methanol synthesis reactors through the adoption of highly conductive structured catalysts
We present herein a modeling study of two innovative highly conductive structured multi-tubular reactors (SR) for the methanol synthesis, loaded with copper honeycomb monoliths (HM) and open-cell foams (OF), respectively, and discuss their performances in comparison with those of the state-of-the-art commercial Lurgi multi-tubular packed-bed (PB) reactor. We simulate the complete process loop (including reactor and condenser) for this purpose. By parametric analysis of changes in feed gas composition and reactor tube length, we show that, when short tubes are employed, conductive SR outperform PB reactors, in which the heat transfer worsens when low gas flow rates are employed. Simulations suggest that compact SR for methanol synthesis can be indeed operated with limited hot-spot temperatures and reasonable recycle ratios. (C) 2013 Elsevier B.V. All rights reserved.