화학공학소재연구정보센터
Biotechnology Letters, Vol.36, No.8, 1693-1699, 2014
Construction of dextrin and isomaltose-assimilating brewer's yeasts for production of low-carbohydrate beer
Most Saccharomyces spp. cannot degrade or ferment dextrin, which is the second most abundant carbohydrate in wort for commercial beer production. Dextrin-degrading brewer's bottom and top yeasts expressing the glucoamylase gene (GAM1) from Debaryomyces occidentalis were developed to produce low-carbohydrate (calorie) beers. GAM1 was constitutively expressed in brewer's yeasts using a rDNA-integration system that contained yeast CUP1 gene coding for copper resistance as a selective marker. The recombinants secreted active glucoamylase, displaying both alpha-1,4- and alpha-1,6-debranching activities, that degraded dextrin and isomaltose and consequently grew using them as sole carbon source. One of the recombinant strains expressing GAM1 hydrolyzed 96 % of 2 % (w/v) dextrin and 98 % of 2 % (w/v) isomaltose within 5 days of growth. Growth, substrate assimilation, and enzyme activity of these strains were characterized.