화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.6, 1174-1180, December, 1996
K2Ti6O13 whisker의 제조 공정에서 Potassium 및 Flux 성분의 회수
Recovery of Potassium and Flux Component in the Production Process of K2Ti6O13 Whisker
초록
공업용 TiO2, K2CO3, K2MoO4를 출발원료로 사용하여 소성법과 융제법에 의해 육티탄산칼륨 섬유를 합성하였다. 소성법의 경우 비등수로 처리한 후의 여액이 pH 9 이상의 알칼리성이 되므로 적절한 중화 처리가 필요하였으며, 칼륨 성분의 회수는 미량이므로 회수한다는 것이 경제적으로 부적합하였다. 또한 융제법의 경우 초생상 10g을 100m1로 10번 처리하였을 때 융제인K2MoO4, 중 Mo성분이 96.1%, K성분이 91.8%가 회수되었다.
Potassium hexatitanate whisker was effectively prepared with calcination and flux method by using industrial TiO2, K2CO3 and K2MoO4 as the starting materials. When it was synthesized by the calcination method, the filtrate after boiling water treatment was required a neutralization, as the pH of filtrate was higher than 9. Because K component was very small, recovery of K component was not economically suitable. In case of flux method, flux was recovered 96.1% of Mo component and 91.8% of K component at K2MoO4, for l0th treatment in boiling water of 100m1 to l0g.
  1. Buchner W, Schiebs R, Winter G, Buchel KH, "Industrial Inorganic Chemistry," VCH Pub. N.Y. (1989)
  2. Noll W, Wilmanns Encyclopedia der Techischer Chemic 4th Ed., 8, Verlag Chemiic, Weinheim-Decrfield Beach-Basel (1974)
  3. Muto F, Nakagome T, Take S, Yogyo-Kyakai-Shi, 86, 443 (1978)
  4. Ohta N, Fujiki Y, Yogyo-Kyokai-Shi, 89, 134 (1981)
  5. Shimizu T, Yogyo-Kyokai-Shi, 85, 567 (1977)
  6. Shimizu T, Yogyo-Kyokai-Shi, 83, 305 (1975)
  7. Shimizu T, Yogyo-Kyokai-Shi, 88, 339 (1978)
  8. Fujiki Y, Ohta N, Yogyo-Kyokai-Shi, 88, 112 (1980)
  9. Lee CT, Kim SW, Lee JS, Kim YM, Kwon KT, J. Korean Ind. Eng. Chem., 5(3), 478 (1994)
  10. Lee CT, Choi US, Kim YM, J. Korean Ind. Eng. Chem., 5(1), 160 (1994)
  11. 환경처, 환경오염공정시험법(수질분야) (1995)
  12. 환경처, 환경관계법규 수질환경보전법 시행규칙 (1995)