화학공학소재연구정보센터
Applied Surface Science, Vol.311, 808-815, 2014
Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability
A three-dimensional (3D), free-standing graphene foam was prepared by plasma-enhanced chemical vapor deposition on nickel-foam. The prepared graphene foam was found to consist of few-layered vertically-aligned graphene sheets with highly graphite structure. Owing to the 3D interconnected porous nanostructures, the graphene foam exhibited a high electrical conductivity of 125 S/cm and a large surface area of 625.4 cm(2)/g. For practical application, we prepared the graphene foam/epoxy composites showing a maximum conductivity of 196 S/m at 2.5 vol.% filler loading, and a rather low percolation threshold of 0.18 vol.%. Furthermore, the derived graphene oxide foam exhibited an excellent absorption capability (177.6 mg/g for As(V), 399.3 mg/g for Pb(II) and recyclability (above 90% removal efficiency after five cycles) for the removal of heavy metal ions. The present study reveals that the multifunctional graphene foam may broaden the graphene-based materials for the applications in electrically conductive composites and environmental cleanup. (C) 2014 Elsevier B.V. All rights reserved.