Applied Surface Science, Vol.292, 1020-1029, 2014
Hydroxyapatite-gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution
A novel adsorbent of hydroxyapatite-gelatin (HAP-GEL) nanocomposite was developed for nitrobenzene removal from aqueous solution. The adsorbent was characterized and its performance in nitrobenzene removal was evaluated. The effects of contact time, adsorbent dosage, temperature, pH, ionic strength, humic acid, and the presence of solvent on nitrobenzene adsorption, as well as the thermodynamic parameters for adsorption equilibrium were also investigated. Results showed that HAP-GEL nanocomposite possessed good adsorption ability to nitrobenzene. The adsorption process was fast, and it reached a steady state after only 1 min. Nitrobenzene removal was increased with an increasing amount of adsorbent dosage but decreased as the temperature and pH increased. Meanwhile the amount of nitrobenzene adsorbed decreased with an increase of ionic strength from 0.01 to 1.0 mol/L and humic acid from 10 to 50 mg/L. The adsorption isotherm studies showed that both Langmuir and Freundlich models could fit the experimental data well, and the maximum adsorption capacity was estimated to be 42.373 mg/g. The thermodynamic parameters suggested that the adsorption of nitrobenzene on HAP-GEL nanocomposite was physisorption, spontaneous and exothermic in nature. Findings of this study demonstrated the potential utility of the HAP-GEL nanocomposite as an effective adsorbent for nitrobenzene removal from aqueous solution. (C) 2013 Elsevier B.V. All rights reserved.
Keywords:Nitrobenzene;Adsorption;Hydroxyapatite-gelatin nanocomposite;Isotherm;Biocompatible adsorbent