화학공학소재연구정보센터
Applied Surface Science, Vol.288, 579-583, 2014
Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion
In this paper, we demonstrate an effective approach for the three-dimensional (3D) pattern-structured superhydrophobic PDMS surfaces with controllable adhesion by using femtosecond laser etching method. By combining different laser power with a multi-layered etching way, various 3D patterns can be fabricated (for example, convex triangle array, round pit array, cylindrical array, convex rhombus array and concave triangle-cone array). The as-prepared surfaces with 3D patterns show superhydrophobic character and water controllable adhesion that range from ultralow to ultrahigh by designing different 3D patterns, on which the sliding angle can be controlled from 1 degrees to 90 degrees (the water droplet is firmly pinned on the superhydrophobic surface without any movement at any tilted angles). The 3D pattern-dependent adhesive property is attributed to the different contact modes. This work will provide a facile and promising strategy for the adhesion adjustment on superhydrophobic surfaces. (C) 2013 Elsevier B.V. All rights reserved.