Applied Surface Science, Vol.273, 118-121, 2013
Effects of particle size and pH value on the hydrophilicity of graphene oxide
Graphene-based material has attracted extensive attention from both experimental and theoretical scientific communities due to its extraordinary properties. As a derivative of graphene, graphene oxide has also become an attractive material and been investigated widely in many areas since the ease of synthesizing graphene oxide and its solution processability. In this paper, we prepared graphene oxide by the modified Hummers method. The hydrophilicity of graphene oxide with different particle sizes and pH values was characterized with water contact angle. And we find the water contact angle of the different graphene oxides decreases from 61.8 degrees to 11.6 degrees, which indicates graphene oxide has the excellent hydrophilicity. The X-ray photoelectron spectroscopy, zeta potential and dynamic light scattering measurements were taken to study the chemical state of elements and the performances of graphene oxide in this experiment. The results show the hydrophilicity of graphene oxide is sensitive to particle size and pH value, which result in the variations of the ionizable groups of graphene oxide. Our work provides a simple ways to control the hydrophilicity of graphene oxide by adjusting particle size and pH value. (C) 2013 Elsevier B. V. All rights reserved.