화학공학소재연구정보센터
Applied Surface Science, Vol.265, 778-783, 2013
Solvothermal synthesis of carbon coated N-doped TiO2 nanostructures with enhanced visible light catalytic activity
Visible light-active carbon coated N-doped TiO2 nanostructures(CTS-TiO2) were prepared by a facile one-step solvothermal method with chitosan as carbon and nitrogen resource at 180 degrees C. The as-prepared samples were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), N-2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. The CTS-TiO2 nanocomposites possess anatase phase of nanocrystalline structure with average particle size of about 5-7 nm. A wormhole mesostructure can be observed in the CTS-TiO2 nanocomposites due to the constituent agglomerated of nanoparticles. It has been evidenced that the nitrogen was doped into the anatase titania lattice and the carbon species were modified on the surface of TiO2. The photocatalytic activities of the as-prepared photocatalysts were measured by the degradation of methylene blue (MB) under visible light irradiation at lambda >= 400 nm. The results show that CTS-TiO2 nanostructures display a higher visible light photocatalytic activity than pure TiO2, commercial P25 and C-coated TiO2 (C-TiO2) photocatalysts. The higher photocatalytic activity could be attributed to the band-gap narrowed by N-doping and the accelerated separation of the photo-generated electrons and holes by carbon modification. (C) 2012 Elsevier B.V. All rights reserved.