화학공학소재연구정보센터
Applied Surface Science, Vol.265, 412-417, 2013
Response of Si- and Al-doped graphenes toward HCN: A computational study
Sensitivity of Si- and Al-doped graphenes (SiG and AlG) toward toxic HCN has been investigated using density functional theory (DFT) in terms of energetic, geometric and electronic properties. Optimized configurations corresponding to physisorption and, subsequently, chemisorption of HCN on each surface have been identified. It is found that HCN molecule can be adsorbed on impurity atoms with adsorption energies about -27.20 and -38.75 kcal/mol on the SiG and the AlG, respectively. By comparing to HCN adsorption on SiG, it can be inferred that molecular HCN adsorbed on AlG can induce significant change in AlG conductivity. On the basis of calculated changes in the HOMO/LUMO energy gap it is found that electronic properties of AlG are sensitive toward adsorption of HCN and the reverse is correct for SiG, suggesting that the AlG may be a promising sensor for HCN. (C) 2012 Elsevier B.V. All rights reserved.