Applied Microbiology and Biotechnology, Vol.98, No.9, 3965-3974, 2014
Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production
In spite of numerous advantages on operating fermentation at elevated temperatures, very few thermophilic bacteria with polyhydroxyalkanoates (PHAs)-accumulating ability have yet been found in contrast to the tremendous mesophiles with the same ability. In this study, a thermophilic poly(3-hydroxybutyrate) (PHB)-accumulating bacteria (Chelatococcus daeguensis TAD1), isolated from the biofilm of a biotrickling filter used for NOx removal, was extensively investigated and compared to other PHB-accumulating bacteria. The results demonstrate that C. daeguensis TAD1 is a growth-associated PHB-accumulating bacterium without obvious nutrient limitation, which was capable of accumulating PHB up to 83.6 % of cell dry weight (CDW, w/w) within just 24 h at 45 A degrees C from glucose. Surprisingly, the PHB production of C. daeguensis TAD1 exhibited strong tolerance to high heat stress as well as nitrogen loads compared to that of other PHB-accumulating bacterium, while the optimal PHB amount (3.44 A +/- 0.3 g l(-1)) occurred at 50 A degrees C and C/N = 30 (molar) with glucose as the sole carbon source. In addition, C. daeguensis TAD1 could effectively utilize various cheap substrates (starch or glycerol) for PHB production without pre-hydrolyzed, particularly the glycerol, exhibiting the highest product yield (Y (P/S), 0.26 g PHB per gram substrate used) as well as PHB content (80.4 % of CDW, w/w) compared to other carbon sources. Consequently, C. daeguensis TAD1 is a viable candidate for large-scale production of PHB via utilizing starch or glycerol as the raw materials.
Keywords:Chelatococcus daeguensis TAD1;Growth-associated PHB-accumulating;Thermophilic;Starch;Glycerol