Applied Microbiology and Biotechnology, Vol.98, No.7, 3033-3047, 2014
In silico prediction and in vitro identification of bluetongue virus 4 VP5 protein B-cell epitopes
VP5, the outer capsid protein of bluetongue virus (BTV), plays an important role in viral penetration and antibody-mediated viral neutralization. Therefore, VP5 represents an important target for development of vaccines and diagnostic tests. In this study, we use bioinformatic tools to predict nine antigenic B cell epitopes in the VP5 protein of a BTV serotype 4 (BTV4) isolate from China. Further, we generate five BTV4 VP5-specific monoclonal antibodies (MAbs) and define their corresponding epitopes using a set of VP5-derived peptides expressed as maltose-binding protein (MBP) fusion proteins. The five identified epitopes map to amino acids 119-134, 257-272, 286-301, 322-337, and 481-496 of the VP5 protein. Importantly, the epitopes identified using VP5-derived peptides do not correlate with our bioinformatic prediction of antibody epitopes. Identification and characterization of BTV4 VP5 protein epitopes may aid the development of diagnostic tools and provide information with which to study the structure of the BTV VP5 protein.