Applied Energy, Vol.118, 100-113, 2014
Experimental study of the relationship between injection rate shape and Diesel ignition using a novel piezo-actuated direct-acting injector
Injection rate shaping is one of the most attractive alternatives to multiple injection strategies; however, its implementation has been for long time impeded by limitations in the injector technology and therefore, the experimental information available in the literature about this topic is lacking. In this work, a novel prototype common-rail injector featuring direct control of the nozzle needle by means of a piezo-stack (direct-acting) allowed a fully flexible control on the nozzle needle movement and enabled the implementation of alternative injection rate shapes typologies. This state of the art injector, fitted with a 7-hole nozzle, was tested at real engine conditions studying the spatial-temporal evolution of CH* and OH* chemiluminescence intensity produced by the fuel combustion. A wide test matrix was performed in an optically accessible hot-spray test rig to understand the influence that partial needle lift and alternative injection rate shapes have on the Diesel ignition The results showed that alternative injection rate profiles have a substantial impact on the ignition event affecting the premixed phase of the combustion and the location where the ignition takes place. Moreover, the results proved that the modifications in the internal flow caused by the partial needle lift are reflected on the ignition timing: although partial needle lift and injection pressure have similar effects on the mass flow rate, in the first case, the ignition delay is reduced, while in the second, the combustion is delayed as a consequence of a different spray development. (C) 2013 Elsevier Ltd. All rights reserved.