화학공학소재연구정보센터
Applied Energy, Vol.111, 175-185, 2013
Potential for solar-assisted post-combustion carbon capture in Australia
A techno-economic analysis has been performed for a coal-fired power plant retrofitted with Solvent-based Post-combustion Carbon Capture (PCC) technology which is partially supplied with thermal energy by solar thermal collectors. The plant is compared with a generic PCC plant where all the thermal energy is provided by steam bled from the steam cycle. The individual merits of a suite of solar collector technologies which includes Flat Plate Collectors (FPCs), Compound Parabolic Collectors (CPCs), Linear Fresnel Collectors (LFCs), Evacuated Tube Collectors (ETCs) and Parabolic Trough Collectors (PTCs) to supply thermal energy for the PCC plant have been studied. The plant has been simulated for three different locations in Australia: Sydney, Townsville and Melbourne. The overall system consists of three subsystems: power plant, PCC plant and solar collector field. A base case scenario is studied in which there is no heat integration between the three subsystems and is compared to a system with heat integration. Additionally incentives such as Renewable Energy Certificates (RECs), carbon tax/credits and government subsidies have been added to the economic model and a sensitivity analysis performed for each scenario of incentives for all five solar collector technologies at the three locations. The ETC case performs best amongst solar collectors when the three subsystems have heat integration while PTCs perform best in the case with no heat integration. The best location for the solar-assisted PCC (SPCC) plant is Townsville. It was found that the addition of the solar field reduces the carbon tax in order to make carbon capture and storage viable in comparison with a conventional non-capturing coal fired plant. (C) 2013 Elsevier Ltd. All rights reserved.