Applied Energy, Vol.95, 246-252, 2012
Thermal simulation of composite high conductivity laminated microencapsulated phase change material (MEPCM) board
In this paper, 3-dimensional geometric models have been developed to evaluate the particle distribution effect on the thermal performance of a composite high conductivity laminated MEPCM board. For the purpose of comparison three geometric configurations (rectangular, triangular and pyramidal) were considered for the distribution network. Copper foam was used as the base material for fixing the positions of the MEPCM particles and to enhance the thermal conductivity of the composite laminated board. The simulation results show that the thermal response times for the rectangular and triangular geometries were about half that of the pyramidal geometry during cooling and heating processes of the board. Even though there were no significant differences in their effective thermal conductivities, the values were more than ten (10) times that of pure MEPCM but suffered from a reduction in energy storage capacities by about 48%. Other methods of enhancing both thermal conductivity and energy storage are therefore encouraged. (C) 2012 Elsevier Ltd. All rights reserved.