Applied Energy, Vol.94, 257-269, 2012
Effects of various operating conditions on the hydrogen absorption processes in a metal hydride tank
The effects of the operating conditions on the performance of metal hydride hydrogen storage tanks are complicated and need detailed investigations for further optimization. In this study, a mathematical model is developed to understand the effects of the various operating conditions on the hydrogen absorption processes in a LaNi5 metal hydride tank. The numerical results indicate that the quickest charging process occurs within the first 20 s, and the quickest charging rate and duration are mainly affected by the charging pressure and initial temperature, respectively. The effect of cooling level on this process is insignificant. For both the short-time charging (2 min) and long-time charging, the hydrogen fueling performance is significantly affected by the cooling level (the heat transfer coefficient and surrounding temperature) and charging pressure. In order to ensure sufficiently quick hydrogen charging, the charging pressure needs to be kept enough higher than the equilibrium pressure, and due to the fast heating of the metal hydride, the influence of the initial temperature is less significant than the cooling condition. The general distributions of the absorbed hydrogen fraction and temperature are similar under the different operating conditions. (C) 2012 Elsevier Ltd. All rights reserved.
Keywords:Hydrogen storage;Metal hydride tank;Hydrogen absorption process;Mathematical model;Charging rate and duration