화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.111, 46-57, 2012
Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature
Short column SBA-15 supported Pd mesoporous catalysts with controllable acidity and expanded micro-porosity were firstly prepared through a simple "two-solvents" approach. The catalytic performances of the synthesized catalysts were evaluated for toluene oxidation. The characterization results reveal that Al atoms prefer to be tetrahedrally coordinated in the framework of the synthesized materials, and the acid sites can significantly promote Pd particle dispersion and metallic Pd oxidation due to their electrophilic characters. The Pd-confined catalysts possess high toluene turnover frequencies and toluene can be totally converted to CO2 and H2O below 210 degrees C. The oxidation reaction can be suppressed by water vapor due to the formation of inactive Pd-hydroxides, and the synthesized catalyst has a good hydrothermal stability and high tolerance to moisture. Both the specific surface area and the toluene adsorption/desorption property are not the main factors determining the catalytic activity. Overall, the toluene oxidation performance is closely related to the support microporosity and acidity, the Pd dispersion and the CO2 desorption capability. (C) 2011 Elsevier B.V. All rights reserved.