화학공학소재연구정보센터
Advanced Functional Materials, Vol.24, No.6, 793-799, 2014
Atomic-Scale Visualization of Polarization Pinning and Relaxation at Coherent BiFeO3/LaAlO3 Interfaces
Complex oxide heterointerfaces, which play host to an incredible variety of interface physical phenomena, are of great current interest in introducing new functionalities to systems. Here, coherent super-tetragonal BiFeO3/LaAlO3 and rhombohedral BiFeO3/LaAlO3 heterointerfaces are investigated by using a combination of high-angle annular dark-field (HAADF) imaging and annular bright-field (ABF) imaging in a spherical aberration (Cs) corrected scanning transmission electron microscope (STEM), and first-principles calculations. The complicated ferroelectric polarization pinning and relaxation that occurs at both interfaces is revealed with atomic resolution, with a dramatic change in structure of BiFeO3, from cubic to super-tetragonal-like. The results enable a detailed explanation to be given of how non-bulk phase structures are stabilized in thin films of this material.