Korean Journal of Chemical Engineering, Vol.31, No.9, 1624-1631, September, 2014
Optimization of formic acid hydrolysis of corn cob in xylose production
E-mail:
Dilute acid pretreatment of lignocellulosic material is one of the significant steps in a biorefinery. We used response surface methodology to determine the important factors of formic acid concentration (2%-6% wt%), treatment time (30-150 min), reaction temperature (120-160 ℃), and liquid to solid ratio (3-11 mL/g) on dilute acid hydrolysis of corn cob to produce xylose. A xylose yield of 81.6% and selectivity of 15.1 g/g were achieved under the optimal conditions (5% acid concentration, 150 min, 135 ℃, and 7 mL/g liquid to solid ratio). The addition of trivalent salts
(FeCl3, Fe(NO3)3, and Fe2(SO4)3) to the reaction system enhanced the xylose yield but decreased selectivity. The FeCl3 concentration over 0.75 mol/L had a negative effect on xylose production.
- Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T, Science, 311, 484 (2006)
- Saha BC, J. Ind. Microbiol. Biotechnol., 30, 279 (2003)
- Granstrom TB, Leisola M, Agro Food Industry Hi-Tech, 20, 32 (2009)
- Yang WD, Li PL, Bo DC, Chang HY, Wang XW, Zhu T, Bioresour. Technol., 133, 361 (2013)
- Boussaid A, Robinson J, Cai YJ, Gregg DJ, Saddler JR, Biotechnol. Bioeng., 64(3), 284 (1999)
- Pan XJ, Xie D, Yu RW, Lam D, Saddler JN, Ind. Eng. Chem. Res., 46(8), 2609 (2007)
- Shatalov AA, Pereira H, Carbohydr. Polym., 87, 210 (2012)
- Zheng YZ, Lin HM, Tsao GT, Biotechnol. Prog., 14(6), 890 (1998)
- Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS, Biofuels, Bioproducts and Biorefining, 2, 438 (2008)
- Herrera A, Tellez-Luis S, Ramyrez J, Vazquez M, J. Cereal Sci., 37, 267 (2003)
- Wang GS, Lee JW, Zhu JY, Jeffries TW, Appl. Biochem. Biotechnol., 163(5), 658 (2011)
- Zhang R, Lu XB, Sun YS, Wang XY, Zhang ST, J. Chem. Technol. Biotechnol., 86(2), 306 (2011)
- Jung M, Schierbaum B, Vogel H, Chem. Eng. Technol., 23(1), 70 (2000)
- Sproull RD, The production of furfural in an extraction coupled reation system, Ph D. Thesis, Purdue University, Indiana, United States (1986)
- Zeitsch KJ, The chemistry and technology of furfural and its many by-products, Elsevier (2000)
- Kang KE, Park DH, Jeong GT, Carbohydr. Polym., 92, 1321 (2013)
- Liu L, Sun JS, Cai CY, Wang SH, Pei HS, Zhang JS, Bioresour. Technol., 100(23), 5865 (2009)
- Sun YS, Lu XB, Zhang ST, Zhang R, Wang XY, Bioresour. Technol., 102(3), 2936 (2011)
- Wang RJ, Sun YS, Zhang ST, Lu XB, Bioresour. Technol., 120, 290 (2012)
- Cheng KK, Zhang JA, Chavez E, Li JP, Appl. Microbiol. Biotechnol., 87(2), 411 (2010)
- Sluiter A, Determination of structural carbonydrates and lignin in biomass, National Renewable Energy Laboratory (NREL), Golden, Co. (2011)
- Garrote G, Dominguez H, Parajo JC, Process Biochem., 36(6), 571 (2001)
- Nabarlatz D, Ebringerova A, Montane D, Carbohydr. Polym., 69, 20 (2007)
- Pinto J, Cruz D, Paiva A, Pereira S, Tavares P, Fernandes L, Varum H, Construction and Building Materials, 34, 28 (2012)
- Wang GS, Lee JW, Zhu JY, Jeffries TW, Appl. Biochem. Biotechnol., 163, 658 (2010)
- Fengel D, Wegener G, Wood: Chemistry, ultrastructure, reactions, Walter de Gruyter (1983)
- Walther T, Hensirisak P, Agblevor FA, Bioresour. Technol., 76(3), 213 (2001)
- Lavarack BP, Griffin GJ, Rodman D, Biomass Bioenerg., 23(5), 367 (2002)
- Lu YL, Mosier NS, Biotechnol. Bioeng., 101(6), 1170 (2008)
- Canettieri EV, Rocha GJDM, de Carvalho JA, Silva JBDAE, Bioresour. Technol., 98(2), 422 (2007)
- Cassales A, de Souza-Cruz PB, Rech R, Ayub MAZ, Biomass Bioenerg., 35(11), 4675 (2011)
- Yemis O, Mazza G, Bioresour. Technol., 109, 215 (2012)
- Akpinar O, Sabanci S, Levent O, Sayaslan A, Industrial Crops and Products, 40, 39 (2012)
- Dominguez JM, Cao N, Gong CS, Tsao GT, Bioresour. Technol., 61(1), 85 (1997)
- Marcotullio G, Krisanti E, Giuntoli J, de Jong W, Bioresour. Technol., 102(10), 5917 (2011)