화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.4, 425-429, August, 2014
[Hmim][PF6]를 사용한 벤질 알코올의 호기성 산화반응용 팔라듐-은 차콜 촉매 제조
Synthesis of Pd-Ag on Charcoal Catalyst for Aerobic Benzyl Alcohol Oxidation Using [Hmim][PF6]
E-mail:
초록
호기성 벤질 알코올 산화반응용 상용촉매 개발을 위하여 팔라듐이 담지된 차콜 입자를 제조하였다. 특히 촉매의 팔라듐 분산도를 높이기 위해서 상온 이온성액체 중 하나인 [Hmim][PF6]을 기능성 용매로 사용하여 입자를 합성하였다. 다양한 농도의 팔라듐을 함침하여 제조된 입자의 반응성을 측정한 결과 7.5 wt%의 촉매가 가장 우수한 반응 활성과 안정성을 나타내었다. 또한 조촉매로서 다양한 농도의 은입자를 합침하여 촉매를 제조하였다. 동일한 반응조건에서 팔라듐과 은의 질량 비율이 9 : 1인 촉매가 높은 금속 분산도로 인하여 가장 반응성이 우수하였다.
Pd on charcoal particles were prepared by wet impregnation to develop commercial catalyst for aerobic benzyl alcohol oxidation. Especially, one of room temperature ionic liquids, [Hmim][PF6], was used as an effective solvent in the synthesis to improve the metal dispersion of the catalysts. Among the Pd/Charcoal with various Pd concentrations, 7.5 wt% catalyst showed the higher catalytic activity and stability. Moreover, Ag was used as a promoter with various ratios in catalyst preparation. Under identical reaction conditions, the catalyst with 9 : 1 of Pd and Ag weight ratios was most active due to higher metal dispersion.
  1. Sheldon RA, Arends IWCE, Dijksman A, Catal. Today, 57(1-2), 157 (2000)
  2. Sheldon RA, Arends IWCE, Brink GJT, Dijksman A, Acc. Chem. Res., 35, 774 (2002)
  3. Sheldon RA, Kochi JK, Metal-catalyzed oxidation of organic compounds, Academic Press, New York (1981)
  4. Stevens RV, Chapman KT, Weller HN, J. Org. Chem., 45, 2030 (1980)
  5. Holum JR, J. Org. Chem., 26, 4814 (1961)
  6. Lee DG, Spitzer UA, J. Org. Chem., 35, 3589 (1970)
  7. Highet RJ, Wildman WC, J. Am. Chem. Soc., 77, 4399 (1955)
  8. Menger FM, Lee C, Tetrahedron Lett., 22, 1655 (1981)
  9. Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 122(29), 7144 (2000)
  10. Nishimura T, Onoue T, Ohe K, Uemura S, J. Org. Chem., 64, 6750 (1999)
  11. Hasan M, Musawir M, Davey PN, Kozhevnikov IV, J. Mol. Catal. A-Chem., 180(1-2), 77 (2002)
  12. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 126(34), 10657 (2004)
  13. Abad A, Concepcion P, Corma A, Garcia H, Angew. Chem. Int. Ed., 44, 4066 (2005)
  14. Liu W, Flytzanistephanopoulos M, J. Catal., 153(2), 304 (1995)
  15. Arcadi A, Di Giuseppe S, Curr. Org. Chem., 8, 795 (2004)
  16. Tian ZQ, Ren B, Wu DY, J. Phys. Chem. B, 106(37), 9463 (2002)
  17. Vonmatt P, Pfaltz A, Angew. Chem. Int. Ed., 32, 566 (1993)
  18. Astruc D, Lu F, Aranzaes JR, Angew. Chem. Int. Ed., 44, 7852 (2005)
  19. Fernandez-Garcia M, Martinez-Arias A, Salamanca LN, Coronado JM, Anderson JA, Conesa JC, Soria J, J. Catal., 187(2), 474 (1999)
  20. Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N, Nature, 418, 164 (2002)
  21. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA, Acc. Chem. Res., 36, 20 (2003)
  22. Narayanan R, El-Sayed MA, Nano Lett., 4, 1343 (2004)
  23. Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P, Nat. Mater., 6(9), 692 (2007)
  24. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA, Nano Lett., 7, 3097 (2007)
  25. Wang C, Daimon H, Onodera T, Koda T, Sun S, Angew. Chem, Int. Ed., 47, 3588 (2008)
  26. Wasserscheid P, Keim W, Angew. Chem. Int. Ed., 39, 3773 (2000)
  27. Welton T, Chem. Rev., 99(8), 2071 (1999)
  28. Jeong JB, Yoo KS, Appl. Chem. Eng., 24(4), 412 (2013)