화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.4, 386-391, August, 2014
코로나 방전 플라즈마를 이용한 화산암재 분말 살균
Sterilization of Scoria Powder by Corona Discharge Plasma
E-mail:
초록
본 연구에서는 상압 저온 코로나 방전 플라즈마를 화산암재(스코리아) 분말의 살균에 적용하였다. 스코리아 분말에 Escherichia coli (E. coli) 배양액을 살포하여 균일하게 혼합한 후, 코로나 방전 플라즈마 특성 인자인 방전전력, 방전시 간, 주입기체, 전극간격 등의 조건을 변화시키며 E. coli 살균효율을 조사하였다. 실험 결과 상압 저온 코로나 방전 플라즈마는 분말상의 스코리아 살균에 아주 효과적인 것으로 나타났으며, 방전전력 15 W에서 5 min 동안 살균한 결과 E. coli가 99.9% 이상 사멸하였다. 방전전력, 방전시간, 인가전압이 증가할수록 사멸율이 향상되었다. 반응기에 주입되는 기체의 종류에 따른 살균력 실험 결과, 산소 > 모사공기(산소 20%) > 질소 순으로 나타났다. 코로나 방전 플라즈마에 의한 E. coli 살균은 자외선과 활성산화종(산소라디칼, OH라디칼, 오존 등)에 의한 세포막 침식 및 에칭, 그리고 플라즈마 방전 스트리머에 의한 대장균 세포막 파괴로 설명할 수 있다.
Atmospheric-pressure nonthermal corona discharge plasma was applied to the sterilization of biologically contaminated scoria powder. Escherichia coli (E. coli) culture solution was uniformly sprayed throughout the scoria powder for artificial inoculation, which was well mixed to ensure uniformity of the batch. The effect of the key parameters such as discharge power, treatment time, type of gas and electrode distance on the sterilization efficiency was examined and discussed. The experimental results revealed that the plasma treatment was very effective for the sterilization of scoria powder; 5-min treatment at 15 W could sterilize more than 99.9% of E. coli inoculated into the scoria powder. Increasing the discharge power, treatment time or applied voltage led to an improvement in the sterilization efficiency. The effect of type of gas on the sterilization efficiency was in order of oxygen, synthetic air (20% oxygen) and nitrogen from high to low. The inactivation of E. coli under the influence of corona discharge plasma can be explained by cell membrane erosion or etching resulting from UV and reactive oxidizing species (oxygen radical, OH radical, ozone, etc.), and the destruction of E. coli cell membrane by the physical action of numerous corona streamers.
  1. Kam SK, Hyun SS, Lee MG, J. Environ. Sci., 20, 1437 (2011)
  2. Ko JD, Choi WJ, J. Korean Magnetic. Soc., 21, 37 (2011)
  3. Moon SH, Lee HW, Kim JH, Kang KG, Mok YS, Res. J. Chem. Environ., 15, 920 (2011)
  4. Takechi M, Miyamoto Y, Momota Y, Yuasa T, Tatehara S, Nagayama M, Ishikawa K, J. Biomed. Mater. Res. B. Appl. Biomater., 69, 58 (2004)
  5. Kostov KG, Rocha V, Koga-Ito CY, Matos BM, Algatti MA, Honda RY, Kayama ME, Mota RP, Surf. Coat. Technol., 204, 2954 (2010)
  6. Laroussi M, Leipold F, Int. J. Mass Spectrom., 233, 81 (2004)
  7. Laroussi M, Plasma Proc. Polym., 2, 391 (2005)
  8. Miao H, Yun G, Appl. Surf. Sci., 257(16), 7065 (2011)
  9. Lee KN, Paek KH, Ju WT, Lee YH, J. Microbiol., 44, 269 (2006)
  10. Choi JH, Han I, Baik HK, Lee MH, Han DW, Park JC, Lee IS, Song KM, Lim YS, J. Electrostat., 64, 17 (2006)
  11. Moreau M, Orange N, Feuilloley MGJ, Biotechnol. Adv., 26, 610 (2008)
  12. Sari AH, Fadaee F, Surf. Coat. Technol., 205, 385 (2010)
  13. Liang JL, Zheng SH, Ye SY, J. Aerosol Sci., 54, 103 (2012)
  14. Julak J, Scholtz V, Kotucova S, Janouskova O, Phys. Medica, 28, 230 (2012)
  15. Liu H, Chen J, Yang L, Zhou Y, Appl. Surf. Sci., 254(6), 1815 (2008)
  16. Cho MH, Bae EK, Ha SD, Park YS, Mok CK, Hong KP, Kim SP, Park JY, Korean J. Food Sci. Technol., 37, 294 (2005)
  17. Yang L, Chen J, Gao J, J. Electrostat., 67, 646 (2009)