화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.4, 436-442, August, 2014
가역 감온 변색 겔형 염화 코발트/polyvinyl butyral을 이용한 온도 감지 광섬유 센서 연구
Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral
E-mail:,
초록
염화코발트 용액을 사용하여 전자기파와 진동에 영향을 받지 않는 원거리 실시간 광섬유 온도 감지 센서를 개발하였다. 염화코발트 용액을 제조하기 위하여, 물과 에탄올은 부피 비율로 10%와 90%로 고정하고, 용해되는 염화코발트의 양을 다양하게 변화시켰다. 제조된 염화코발트 용액은 자외-가시선 분광 광도계를 사용하여, 온도 변화에 따른 655 nm 파장의 투과도를 측정하였다. 또한 제조된 30.8 mM 염화코발트 수화물 용액에 polyvinyl butyral을 용해시켜 겔화한 후, 온도 변화에 따른 655 nm 파장의 투과도 측정 및 센서 적용 후 광 파워 분석을 실시하였다. 투과도와 광 파워 측정 결과, 25 ℃에서 66.8%와 149.5 nW, 70 ℃에서는 7.1%와 48 nW로 각각 나타나, 온도가 증가함에 따라 투과도와 광 파워 모두 감소하는 경향을 보였다. 본 실험에서 제조된 겔화 염화코발트/polyvinyl butyral은 온도 변화에 따라 655 nm 파장에 대한 광 투과도와 광 파워가 변하는 점을 이용하여 온도 변화를 감지하기 위한 광섬유 센서로 사용 가능함을 확인하였다.
In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 ℃ to 7.1% and 48 nW at 70 ℃, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.
  1. Park BW, Yoon DY, Kim DS, Korean Chem. Eng. Res., 47(5), 558 (2009)
  2. Shao LY, Shevchenko Y, Jacques A, Opt. Exp., 18, 11464 (2010)
  3. Choi HY, Park KS, Park SJ, Peak UC, Lee BH, Choi ES, Opt. Lett., 33, 2455 (2008)
  4. Braginsky VB, Strigin SE, Vyatchanin SP, Phys. Lett. A, 287, 331 (2001)
  5. David R, Hunter IW, Sens. Act. A, 121, 31 (2005)
  6. Nakai T, Ueno Y, Kaneko K, Tanahashi S, Takeda S, Opt. Quant. Elect., 33, 1113 (2001)
  7. Tapia-Mercado J, Khomenko AV, Garcia-Weidner A, J. Lightwave Technol., 19, 70 (2001)
  8. Brambilla G, Elec. Lett., 38, 954 (2002)
  9. Wolithuis RA, Mitchell GL, Saaski E, Hartl JC, Afromowitz MA, IEEE Trans. Biomed. Eng., 38, 974 (1991)
  10. Fernandez-Valdivielso C, Egozkue E, Matias IR, Arregui FJ, Bariain C, Sens. Act. B, 91, 231 (2003)
  11. Yoo WJ, Seo JK, Jang KW, Heo JY, Moon JS, Park JY, Park BG, Lee BS, Optical Review, 18, 144 (2011)
  12. Joung OJ, Kim YH, Maeda K, Fukui K, Korean J. Chem. Eng., 22(1), 99 (2005)
  13. Chandrasekharan N, Kelly LA, J. Am. Chem. Soc., 123(40), 9898 (2001)
  14. Dybko A, Wroblewski W, Rozniecka E, Maciejewski J, Brzozka Z, Sens. Act., 76, 203 (1999)
  15. Bai HX, Tang XR, J. Chin. Chem. Soc., 54, 619 (2007)
  16. Ferguson J, Wood TE, Inorgan. Chem., 14, 184 (1975)
  17. Boltinghouse F, Abel K, Anal. Chem., 61, 1863 (1989)
  18. The Merck Index, 7th Edition, Merck & Co, Rahway, New Jersey, USA, P. 957 (1960)
  19. Savovic J, Nikolic R, Veselinovic D, J. Solution Chem., 33, 287 (2004)
  20. Wang K, Zeng Y, He L, Yao J, Suresh AK, Bellare J, Sridhar T, Wang H, Desalination, 292, 119 (2012)
  21. Eberhardt WH, J. Chem. Educ., 41, 591 (1964)
  22. Lam D, Branda NR, Smit MP, Von Hahn PA, “Variable Transmittance Optical Devices,” US Patent, US 20130278989 A1.
  23. Francisca B, Kenneth A, Anal. Chem., 61, 1863 (1989)
  24. Tong YH, Liu YC, Lu SX, Dong L, J. Sol-Gel Sci. Tech., 30, 157 (2004)
  25. Andre C, Andre D, Fabrizia FB, Phillipp G, Vadim K, George L, Andre H, Franze R, Chem. A Eur. J., 7, 3926 (2001)
  26. Walker FA, J. Am. Chem. Soc., 95, 1150 (1973)