화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 2217-2223, July, 2014
Ligand mediated eco-friendly leaching of zinc from spent catalyst in alkaline media
E-mail:
A novel leaching process for recovering Zn from spent catalyst in alkaline solution has been discussed. The catalyst was characterized for physico-chemical properties by chemical, XRD, TG-DTA and SEM. More than 92% Zn could be extracted from spent catalyst under the conditions: pulp density 2.5% (w/v), NaOH 1 M, EDTA 0.025 M, temperature 80 ℃ and time 3 h. Zn extraction increased with the number of stages. At the 4th stage almost all Zn could be extracted. A tentative process flow-sheet has been proposed based on Zn recovery. Characterization of leach residue by XRD and SEM gave an insight into the mechanism.
  1. Prakash S, Das B, Mohapatra BK, Sep. Sci. Technol., 35(16), 2651 (2000)
  2. Silva PTD, de Mello NT, Duarte MMM, Montenegro MCBSM, Araujo AN, Neto BD, da Silva VL, J. Hazard. Mater., 128(1), 39 (2006)
  3. Ruiz M, Sastre A, Guibal E, Sep. Sci. Technol., 37(9), 2143 (2002)
  4. Ullari BZ, Sep. Sci. Technol., 35(12), 1963 (2000)
  5. Ghaedi M, Mortazavi K, Montazerozohori M, Shokrollahi A, Soylak M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33(4), 2338 (2013)
  6. Ghaedi M, Montazerozohori M, Behfar M, Khodadoust S, Andikaey Z, Biareh MN, Sens. Lett., 9(5), 1718 (2011)
  7. Ghaedi M, Tashkhourian J, Montazerozohori M, Soylak M, Int. J. Environ. Anal. Chem., 93(4), 386 (2013)
  8. Ghaedi M, Montazerozohori M, Biareh MN, Mortazavi K, Soylak M, Int. J. Environ. Anal. Chem., 93(5), 528 (2013)
  9. Kim J, Kaurich TA, Sylvester P, Gonzalez-Martin A, Sep. Sci. Technol., 41(1), 179 (2006)
  10. Anon A, Oil Gas J., 98, 64 (2000)
  11. Liu Q, Zhao YC, Zhao GD, J. Shanghai Univ., 14(5), 332 (2010)
  12. Hsu HC, Lin CI, Huang CH, Chen HK, J. Chem. Eng. Jpn., 38(92), 774 (2005)
  13. Dvorak P, Jandova J, Hydrometallurgy, 77, 29 (2005)
  14. Leclerc N, Meux E, Lecuire JM, J. Hazard. Mater., 91(1-3), 257 (2002)
  15. Zhao YC, Stanforth R, Hydrometallurgy, 56, 237 (2000)
  16. Feng LY, Yang XW, Hydrometallurgy, 89(3-4), 305 (2007)
  17. Di Palma L, Ferrantelli P, Merli C, Biancifiori F, J. Hazard. Mater., 103(1-2), 153 (2003)
  18. Zeng QR, Sauve S, Allen HE, Hendershot WH, Environ. Pollut., 133(2), 225 (2005)
  19. Rumball JA, Richmond GD, Int. J. Miner. Process., 48(1-2), 1 (1996)
  20. Greet C, Smart RSC, Miner. Eng., 15(7), 515 (2002)
  21. Guo KQ, Jiang ZH, Xiao XY, Zhang L, J. Cent. S. Univ. Technol., 19, 1808 (2012)
  22. Gurmen S, Emre M, Miner. Eng., 16(6), 559 (2003)
  23. Kim TH, Kang JG, Sohn JS, Rhee KI, Lee SW, Shin SM, Met. Mater. Int., 14, 655 (2008)
  24. Zhao YC, Stanforth R, Chin. J. Chem. Eng., 12(2), 174 (2004)
  25. Vogel AI, A Text Book of Quantitative Inorganic Analysis, English Language Book Society, Longmans Green Publishers, 2000.
  26. Santos FMF, Pina PS, Porcaro R, Oliveira VA, Silva CA, Leao VA, Hydrometallurgy, 102, 43 (2010)
  27. Zhang H, Chen B, Banfield JF, J. Phys. Chem. C, 114, 14876 (2010)
  28. Tendy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B, Environ. Sci. Technol., 38, 937 (2004)
  29. Dutra AJB, Paiva PRP, Tavares LM, Miner. Eng., 19(5), 478 (2006)