화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1486-1492, July, 2014
Carbon dioxide absorption using a phase transitional alkanolamine-alcohol mixture
E-mail:
Some alkanolamine-alcohol mixtures separate into a CO2 rich phase and a CO2 lean phase after the absorption of CO2, which makes possible a new approach to CO2 capture. In this study, CO2 absorbent solutions with various concentrations of monoethanolamine (MEA) and diethanolamine (DEA) were prepared by mixing them with alcohol. The CO2 absorption capacities of the alkanolamine-alcohol mixtures were investigated by using a semi-batch reactor at 313 K. The species distributions of the absorbents were identified in order to determine the CO2 absorption mechanism of these solutions. Although the CO2 absorption capacities of the phase transitional absorbents are lower than that of aqueous solutions, we conclude from our experimental results that the phase transitional solutions have the economic advantages, and in particular lower regeneration energies, because only the CO2-rich phase needs to be transported to the stripper.
  1. Mofarahi M, Khojasteh Y, Khaledi H, Farahnak A, Energy, 33(8), 1311 (2008)
  2. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
  3. Hook RJ, Ind. Eng. Chem. Res., 36(5), 1779 (1997)
  4. Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF, Ind. Eng. Chem. Res., 42(12), 2832 (2003)
  5. Song HJ, Park SW, Kim HT, Gaur A, Park JW, Lee SJ, Int. J. Greenhouse Gas Control, 11, 64 (2012)
  6. Fernandez ES, Goetheer ELV, Energy Procedia, 4, 868 (2011)
  7. Majchrowicz ME, Brilman DWF, Groeneveld MJ, Energy Procedia, 1, 979 (2009)
  8. Brouwer JP, Feron PHM, ten Asbroek NAM, Fourth Annual Conference on Carbon Capture & Sequestration, 5 May 2005, Alexandria, VA, USA.
  9. Raynal L, Bouillon PA, Gomez A, Broutin P, Chem. Eng. J., 171(3), 742 (2011)
  10. Raynal L, Alix P, Bouillon PA, Gomez A, de Nailly MLF, Jacquin M, Kittel J, di Lella A, Mougin P, Trapy J, Energy Procedia, 4, 779 (2011)
  11. Aleixo M, Prigent M, Gibert A, Porcheron F, Mokbel I, Jose J, Jacquin M, Energy Procedia, 4, 148 (2011)
  12. Zhang J, Agar DW, Zhang X, Geuzebroek F, Energy Procedia, 4, 67 (2011)
  13. Zhang JF, Misch R, Tan YD, Agar DW, Chem. Eng. Technol., 34(9), 1481 (2011)
  14. Hu L, US 2007/0237695 A1, Hampton University, Hampton, VA, 2007.
  15. Hu L, DE-FG26-05NT42488, DOE Research Report, Hampton University, Hampton, VA, 2009a.
  16. Hu L, US 7,541,011 B1, Hampton University, Hampton, VA, 2009b.
  17. Hu L, US 7,718,151 B1, Hampton University, Hampton, VA, 2010a.
  18. Hu L, US 7,846,407 B2, Hampton University, Hampton, VA, 2010b.
  19. Versteeg GF, Van Swaaij WPM, Chem. Eng. Sci., 43, 573 (1988)
  20. Bosch H, Versteeg GF, Van Swaaij WPM, Chem. Eng. Sci., 44, 2723 (1989)
  21. Aboudheir A, Tontiwachwuthikul P, Chakma A, Idem R, Chem. Eng. Sci., 58(23-24), 5195 (2003)
  22. Ramachandran N, Aboudheir A, Idem R, Tontiwachwuthikul P, Ind. Eng. Chem. Res., 45(8), 2608 (2006)
  23. Fan GJ, Wee AGH, Idem R, Tontiwachwuthikul P, Ind. Eng. Chem. Res., 48(5), 2717 (2009)
  24. Yang Q, Bown M, Ali A, Winkler D, Puxty G, Attalla M, EnergyProcedia, 1, 955 (2009)