화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1476-1480, July, 2014
Antimicrobial characteristics of N-halaminated chitosan salt/cotton knit composites
E-mail:,
Chlorinated chitosan salt/cotton knit composites were prepared, and their water absorbencies, physical and antimicrobial properties, and rechargeabilities were investigated. The water absorbencies of the composites dissolved in acetic acid were higher than in hydrochloric acid. The tensile stress and strain of the composites decreased with increasing citric acid content. The active-chlorine contents of the composites increased with both increasing chlorination time and increasing concentration of the chlorination solution. Antimicrobial tests indicated that the composites had high antimicrobial activity: they completely eliminated Esherichia coli and Staphylococcus aureus. After rechlorination, the active-chlorine content of the composite was slightly higher than that after the initial chlorination, which indicates that the chitosan salt/cotton knit composites are highly rechargeable.
  1. Pourjavadi A, Doulabi M, Hosseini SH, Polymer, 53(25), 5737 (2012)
  2. Berber MR, Hafez IH, Minagawa K, Tanaka M, Mori T, J. Hydrol. Eng., 470-471, 193 (2012)
  3. Long F, Fan S, Wang Y, Lang X, J. Nat. Gas Chem., 19, 251 (2010)
  4. Dafoe JT, Daugulis AJ, Biochem. Eng. J., 77, 7 (2013)
  5. Zou W, Yu L, Liu X, Chen L, Zhang X, Qiao D, Zhang R, Carbohydr. Polym., 87, 1583 (2012)
  6. Rosa F, Casquilho M, Fuel Process. Technol., 103, 174 (2012)
  7. Prajapati VD, Mashru KH, Solanki HK, Jani GK, Int. J. Biol. Macromol., 55, 6 (2013)
  8. Cerruti P, Santagata G, d’Ayala GG, Ambrogi V, Carfagna C, Malinconico M, Persico P, Polym. Degrad. Stabil., 96, 839 (2011)
  9. Lasheras-Zubiate M, Navarro-Blasco I, Ferna´ ndez JM, A´ lvarez JI, J. Hazard. Mater., 233-234, 7 (2012)
  10. Shin HK, Park M, Chung YS, Kim HY, Jin FL, Choi HS, Park SJ, Macromol. Res. (2013)
  11. Sun F, Koh K, Ryu SC, Han DW, Lee J, Bull. Korean Chem. Soc., 33, 3950 (2012)
  12. Li R, Hu P, Ren X, Worley SD, Huang TS, Carbohydr. Polym., 92, 534 (2013)
  13. Marroquin J, Kim HJ, Jung DH, Rhee KY, Carbon Lett., 13, 126 (2012)
  14. Kang MK, Dai J, Kim JC, J. Ind. Eng. Chem., 18(1), 355 (2012)
  15. AR O, Jin DH, Yun JM, Lee YS, Kim HI, Carbon Lett., 10, 208 (2009)
  16. Kim TY, Park SS, Cho SY, J. Ind. Eng. Chem., 18(4), 1458 (2012)
  17. Sun X, Cao Z, Porteous N, Sun Y, Acta Biomaterialia, 8, 1498 (2012)
  18. Dong A, Lan S, Huang JF, Wang T, Zhao TY, Wang WW, Xiao LH, Zheng X, Liu FQ, Gao G, Chen YX, J. Colloid Interface Sci., 364(2), 333 (2011)
  19. Saeidi A, Katbab AA, Farahani EV, Afshar F, Polym. Int., 53, 92 (2003)
  20. Dutkiewicz JK, J. Biomed. Mater. Res., 63, 373 (2002)
  21. Yoo YC, Kim HY, Jin FL, Park SJ, Macromol. Res., 21(6), 687 (2013)
  22. Bang HJ, Kim HY, Jin FL, Woo JW, Park SJ, Bull. Korean Chem. Soc., 32, 541 (2011)
  23. Liu S, Sun G, Ind. Eng. Chem. Res., 45(19), 6477 (2006)
  24. Cao Z, Sun Y, J. Biomed. Mater. Res., 85A, 99 (2008)
  25. Gupta D, Haile A, Carbohydr. Polym., 69, 164 (2007)
  26. Nasr HE, Sayyah SM, Essa DM, Samaha SH, Rabie AM, Carbohydr. Polym., 76, 36 (2009)
  27. Ren X, Kou L, Kocer HB, Zhu C, Worley SD, Broughton RM, Huang TS, Colloids Surf. A: Physicochem. Eng. Asp., 317, 711 (2008)
  28. Shin HK, Park M, Kim HY, Jin FL, Choi HS, Park SJ, Bull. Korean Chem. Soc. (2013)