화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.4, 417-424, July, 2014
Hydroxyl Terminated Polybutadiene/(설탕 또는 탄산칼슘) 현탁계의 유변물성 및 경화특성
Rheology and Curing of Hydroxyl Terminated Polybutadiene/(Sugar or Calcium Carbonate) Suspension
E-mail:
초록
결합제로 열경화성의 hydroxyl terminated polybutadiene(HTPB)을 사용한 고농축 복합화약 시뮬란트의 조성 및 공정조건에 따른 반응성과 유변학적 거동을 연구하였다. 충전제로서 평균입도비가 각각 10:1과 25:1인 bimodal의 탄산칼슘과 설탕을 사용하여 용융혼련기 내에서 최대 75 v%까지 충전하였다. 평판-평판 레오미터를 사용하여 유변물성을 관찰한 바 bimodal 현탁계를 구성할 경우 unimodal 현탁계보다 훨씬 낮은 상대점도 값을 나타내었으며 총 충전제 양 중 작은 입자 분율이 0.25에서 최저 값을 보였다. 경화 온도가 높을수록 경화 개시 및 완료가 빨랐으며 토크가 낮게 유지되었고 경화로 인한 온도 상승 폭이 작았다.
Reactivity and rheological behavior of highly concentrated polymer bonded explosives (PBX) simulant was studied. As a binder, thermosetting hydroxyl terminated polybutadiene (HTPB) was used. By using bimodal CaCO3 (size ratio 10:1) and sugar particles (size ratio 25:1) as fillers, maximum 75 v% filling was possible during melt mixing. The relative viscosities of bimodal suspension were much lower than those of unimodal one and showed minimum values at 0.25 of fine particle fraction. In curing experiment, as curing temperature increased, the time of initiation and completeness of curing reaction became shortened, the torque kept low, and the change of internal temperature decreased.
  1. Akhavan J, The Chemistry of Explosives, 2nd Edition, RSC, Great Britain (2004)
  2. Teipel U, Energetic Material: Particle Processing and Characterization, Wiley-VCH, Weinheim (2005)
  3. Cumming AS, J. Aerospace Tech. Management, 1, 161 (2009)
  4. Proud WG, Walley SM, Williamson DM, Collins AL, Addiss JW, Cent. Eur. J. Energ. Mater., 6, 67 (2009)
  5. Spitzer D, Comet M, Baras C, Pichot V, Piazzon N, J. Phys. Chem. Solids, 71, 100 (2010)
  6. Scott GD, Nature, 188, 908 (1960)
  7. Berryman JG, Phys. Rev. A, 27, 1053 (1983)
  8. Jodrey WS, Tory EM, Phys. Rev. A, 32, 2347 (1991)
  9. Furnas CC, Ind. Eng. Chem., 23, 1052 (1931)
  10. Farris RJ, Trans. Soc. Rheol., 12, 281 (1968)
  11. Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford (2001)
  12. Kwon TM, Jhon MS, Choi HJ, J. Mol. Liq., 75, 115 (1998)
  13. Choi HJ, Kwon TM, Jhon MS, J. Mater. Sci., 35(4), 889 (2000)
  14. Barnes HA, Hutton JF, Walters K, An Introduction to Rheology, Elsevier, Amsterdam (1989)
  15. Kim N, Kim H, Lee J, Korea-Aust. Rheol. J., 18(3), 143 (2006)
  16. Baer MR, Trott WM, Proc. 12th International Detonation Symposium, Aug 11-16th, San Diego, California (2002)
  17. Grantham SG, Siviour CR, Proud WG, Field JE, Meas. Sci. Technol., 15, 1867 (2004)
  18. Millett JCF, Bourne NK, J. Phys. D: Appl. Phys., 37, 2613 (2004)
  19. Colak OU, Turkish J. Eng. Env. Sci., 28, 55 (2004)
  20. Sheffield SA, Gustavsen RL, Alcon RR, AIP Conf. Proc., 429, 575 (1998)
  21. Corky J, Riedel W, Hiermaier WS, Weidemaier P, Thoma K, Shock Compression of Condensed Matter, CP620 (2001)
  22. Gallant FM, PhD. Thesis, University of Maryland, College Park (2003)
  23. Patenaude KJ, Thesis MS, University of Massachusetts, Lowell (2001)
  24. Hailu K, Guthausen G, Becker W, Konig A, Polym. Test., 29, 513 (2010)
  25. Rath SK, Ishack AM, suryavansi UG, Chandrasekhar L, Patri M, Prog. Org. Coat., 62, 393 (2008)
  26. Mazali CAI, Felishberti MI, Eur. Polym. J., 45, 2222 (2009)
  27. Bina CK, Kannan KG, Ninan KN, J. Therm. Anal. Calorim., 78, 753 (2004)
  28. Downton GE, Flores-Luna JL, King CJ, Ind. Eng. Chem. Fundam., 21, 447 (1982)
  29. Yoshimura A, Prud’homme RK, J. Rheol., 32, 53 (1988)
  30. Yilmazer U, Kalyon DM, J. Rheol., 33, 1197 (1989)
  31. Lee S, Hong IK, Ahn Y, Lee JW, Polym.(Korea), 38(2), 213 (2014)
  32. Nanda J, Biswas A, Banerjee A, Soft Matter, 9, 4198 (2013)
  33. Maron SH, Pierce PE, J. Colloid Sci., 11, 80 (1956)
  34. Vinogradov GV, Malkin AY, Rheology of Polymers, Mir Publishers, Moscow (1980)
  35. Sekkar V, Devi KA, Ninan KN, J. Appl. Polym. Sci., 79(10), 1869 (2001)