Clean Technology, Vol.20, No.2, 179-188, June, 2014
제올라이트 3A, 4A, 5A, 13X 펠렛의 탈착 압력에 따른 이산화탄소 흡.탈착 파과특성
Effect of Desorption Pressure on Adsorption and Desorprtion Breakthrough Behaviors of Carbon Dioxide with Zeolite 3A, 4A, 5A, and 13X Pellets
E-mail:,
초록
본 연구에서는 고정탑 반응기(높이 30 cm, 내경 1 cm)에 서로 다른 4종류의 제올라이트(zeolite) 시료를 충전하여, 탈착압력이 CO2 흡착파과 및 탈착파과 거동에 미치는 영향을 연구하였다. 흡착제로는 상용물질인 제올라이트 3A, 4A, 5A, 13X 펠렛(pellet)을 사용하였다. 연속조작(cyclic operation)실험은 흡착-탈착 순으로 5회 반복하여 실험하였으며, 흡착 및 탈착 시간은 각각 80분이었다. 탈착압력이 연속조작거동에 미치는 영향을 살펴보기 위해 탈착 압력(혹은 재생 압력)을 진공(0 bar)에서 3 bar까지 변경하며 실험을 진행하였다. 흡착압력(3 bar), 온도(293 K), 농도(CO2 : N2 = 10 : 90 vol%)와 유량(400 ccm) 조건은 고정하였다. 파과시간(breakthrough time), 포화시간(saturation time), 재생시간(regeneration time), 흡착량 그리고 탑 내 온도변화 등을 측정하였다. 상기 변수 실험을 통하여 연소 후 CO2 포집에 적합한 흡착제 및 운전조건을 찾고자 하였다.
The effect of desorption pressure on CO2 / N2 breakthrough behaviors for 4 different adsorbents was studied at a fixed bed. Zeolite 3A, 4A, 5A, and 13X pellets were used as adsorbents. Cyclic operations were executed with varying desorption pressure from vacuum (0 bar) to 3 bar while other conditions such as adsorption step pressure (3 bar), temperature (293 K), composition (CO2 : N2 = 10 : 90 vol%) and flow rate (400 ccm) were fixed at constant values. Each adsorption and desorption step was set as 80 min, which totaled up to 160 min per a cycle. 5 cycles with adsorption and desorption steps were run overall. After the experiment, breakthrough time, saturation time, and adsorption amount were measured and compared in order to find an optimum adsorbent and a proper operating condition for a post combustion CO2 capture process.
- IEA, “CO2 Emissions from Fuel Combustion, Highlights,” IEA Statistics (2012 Edition), October (2012)
- Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, “Climate Change 2001 : The Scientific Basis,” UK : Cambridge University Press, Cambridge (2001)
- Merel J, Clausse M, Meunier F, Ind. Eng. Chem. Res., 47(1), 209 (2008)
- Mason JA, Sumida K, Herm ZR, Krishna R, Long JR, Energy Environ. Sci., 4, 3030 (2011)
- Ko D, Siriwardane R, Biegler LT, Ind. Eng. Chem. Res., 42(2), 339 (2003)
- Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 19(3), 1153 (2005)
- Xiao P, Zhang J, Webley P, Li G, Singh R, Todd R, Adsorption, 14, 575 (2008)
- Lee SJ, Ahn H, Jee JG, Kim MB, Moon JH, Bea YS, Lee CH, Clean Technol., 6(2), 101 (2004)
- Bai BC, Cho S, Yu HR, Yi KB, Kim KD, Lee YS, J. Ind. Eng. Chem., 19(3), 776 (2013)
- He T, Li Q, Ju Y, J. Chem. Eng. Jap., 46(12), 811 (2013)
- Mofarahi M, Shokroo EJ, Petroleum Coal, 55(3), 216 (2013)
- Walton KS, LeVan MD, Sep. Sci. Technol., 41(3), 485 (2006)
- Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16, 1463 (2012)
- Bonenfant D, Kharoune M, Niquette P, Mimeault M, Hausler R, Sci. Technol. Adv. Mater., 9, 1 (2008)
- Cavenati S, Grande CA, Rodrigues AE, J. Chem. Eng. Data, 49(4), 1095 (2004)