Clean Technology, Vol.20, No.2, 108-115, June, 2014
고정화 산성 이온성 액체 촉매와 금속염화물 촉매를 이용한 셀룰로우스의 5-HMF로의 직접 전환 연구
Direct Conversion for the Production of 5-HMF from Cellulose over Immobilized Acidic Ionic Liquid Catalyst with Metal Chloride
E-mail:,
초록
셀룰로우스(cellulose)를 5-히드록시메틸푸르푸랄(5-hydroxymethylfurfural, 5-HMF)로 직접 전환하기 위해 이온성 액체 용매하에서 다양한 금속염화물과 산 촉매를 비교 연구하였다. 사용한 금속염화물은 Sn(II), Zn(II), Al(III), Fe(III), Cu(II), Cr(III)를 포함한 염화물을 비교하였으며 산 촉매는 산성 이온성 액체를 고정화하여 사용하였다. 비교를 위하여 H2SO4, HCl, Amberlyst-15와 DOWEX50x8을 사용하였다. 제조한 촉매의 산도와 산 밀도 특성은 Hammett Indicator 지시약을 통하여 분석하였다. 5-HMF의 선택도 및 수율은 반응온도, 반응시간과 촉매 비를 통하여 확인하였다. 사용한 촉매들 중에서 5-HMF의
선택도는 CrCl3-6H2O와 SiO2-[ASBI]HSO4를 사용하였을 때에 가장 높게 나타났으며, 상용화 고체 산인 Amberlyst-15와 DOWEX50x8에 비하여 활성이 높다는 것을 확인할 수 있었다. 5-HMF의 선택도는 산 촉매의 산도와 반응에 사용된 촉매비에 영향이 있음을 확인할 수 있었으며, 반응 중 재수화 반응이 일어나 레불린산(levulinic acid)이 생성된다는 것을 확인하였다.
Various metal chlorides and acid catalysts in ionic liquid solvent were investigated to directly convert cellulose into 5-hydroxymethylfurfural (5-HMF). Metal chlorides containing Sn(II), Zn(II), Al(III), Fe(III), Cu(II), and Cr(III) were used and acidic ionic liquid immobilized on silica gel as an acid catalyst and commercial acid catalysts (sulfuric acid, chloric acid, Amberlyst-15, DOWEX50x8) were used for comparison studies. The acid strength and amount of acid catalysts were probed with Hammett indicator. The selectivity and yield of 5-HMF were determined with reaction temperature, reaction time and catalyst ratio. A catalyst containing CrCl3-6H2O and SiO2-[ASBI]HSO4 showed the highest selectivity and it was found that this catalyst had higher activity than commercial solid acid catalysts such as Amberlyst-15 and DOWEX50x8. The selectivity of 5-HMF appeared to be mainly dependent on the acid strength and catalyst ratio, it was found that levulinic acid was produced from 5-HMF by rehydration.
- Hubber GW, Ghheda JN, Barrett CJ, Dumesic JA, Science, 308, 1446 (2005)
- Petrus L, Noordermeer MA, Green Chem., 8, 861 (2006)
- Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R, Chem. Rev., 111(2), 397 (2011)
- Zartman WH, Adkins H, J. Am. Chem. Soc., 55, 4559 (1993)
- Qi X, Watanabe M, Aida TM, Smith RL, Catal. Commun., 9, 2244 (2008)
- Rinaldi R, Schijth F, Energy Environ. Sci., 2, 192 (2009)
- Olusola OJ, Sudip M, Lamidi AU, Kolawole OA, Olayinka OA, Tolu OS, Satanand S, Rashmi C, Energy Environ. Sci., 3, 1833 (2010)
- Akien GR, Qi L, Horvath IT, Chem. Commun., 48, 5850 (2012)
- Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 12, 4974 (2002)
- Li C, Zhang Z, Zhao ZK, Tetrahedron Lett., 50, 5403 (2009)
- Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117 (2009)
- Kim BR, Jeong JW, Lee DH, Kim SY, Yoon HJ, Lee YS, Cho JK, Green Chem., 13, 1503 (2011)
- Binder JB, Raines RT, J. Am. Chem. Soc., 131(5), 1979 (2009)
- Tao F, Song H, Chou L, Carbohydrate Res., 346, 58 (2011)
- Parvulescu VI, Hardacre C, Chem. Rev., 107(6), 2615 (2007)
- Choi JH, Park YB, Lee SH, Cheon JK, Woo HC, Korean Chem. Eng. Res., 48(5), 583 (2010)
- Yurdakoc M, Akcay M, Tonbul Y, Yurdakoc K, Turk. J. Chem., 23(3), 319 (1999)
- Guan J, Cao Q, Guo X, Mu X, Computat. Theoretical Chem., 963, 453 (2010)
- Vanoye L, Fanselow M, Holbrey JD, Atkins MP, Seddon KR, Green Chem., 11, 390 (2009)
- Feng L, Chen ZL, J. Molecular Liquids, 142, 1 (2008)
- Kosan B, Michels C, Meister F, Cellulose, 15, 59 (2008)
- Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597 (2007)
- Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M, Langmuir, 25(9), 5068 (2009)
- Silvia MR, Jose MC, Jose LG, Chem. Eng. J., 181, 538 (2012)
- Zhang C, Fu Z, Liu Y, Dai B, Zou Y, Gong X, Wang Y, Deng W, Wu H, Xu Q, Steven RK, Yin D, Green Chem., 14, 1928 (2012)
- Miao JM, Wan H, Shao YB, Guan GF, Xu B, J. Mol. Catal. A-Chem., 348(1-2), 77 (2011)
- Miao JM, Wan H, Guan GF, Catal. Commun., 12, 353 (2012)
- Feher C, Krivan E, Hancsok J, Skoda RF, Green Chem., 14, 403 (2012)
- Ding ZD, Shi JC, Xiao JJ, Gu WX, Zheng CG, Wang HJ, Carbohydrate Polym., 90, 792 (2012)