Korean Journal of Chemical Engineering, Vol.31, No.7, 1233-1236, July, 2014
Effect of shear stress on the growth of continuous culture of Synechocystis PCC 6803 in a flat-panel photobioreactor
E-mail:,
The effect of hydrodynamic forces generated by air bubbles on cell growth of continuous culture of Synechocystis PCC 6803 was studied in a flat-panel photobioreactor. Keeping all relevant parameters constant enables the optimization of individual parameters, for which a continuous cultivation approach has significant advantages. Continuous culture of Synechocystis PCC 6803 was cultivated under different gas velocities from 0.022 m s^(-1) up to 0.128 m s^(-1). Based on direct determination of effective growth rate at constant cell densities, cell damage due to shear stress induced by the increasing gas velocity at the sparger was directly observed. A significant decrease of effective growth rate was observed at gas velocity of 0.085 m s^(-1) generated at the gas flow rate of 200 ml min^(-1), indicating cell damage by shear stress. Optimization of gas volume and the development of an effective aeration system corresponding to a given reactor setup is important to realize a reliable cell growth.
- Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R, J. Photochem. Photobiol. C: Photochemistry Reviews, 11, 101 (2010)
- Dutta D, De D, Chaudhuri S, Bhattacharya SK, Microb. Cell Fact., 4, 36 (2005)
- Esper B, Badura A, Rogner M, Trends in Plant Science, 11, 543 (2006)
- Vijayendran B, Journal of Business Chemistry, 7, 109 (2010)
- Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Science, 311, 484 (2006)
- Demirbas A, Prog. Energy Combust. Sci., 33, 1 (2007)
- Chisti Y, Biotechnol. Adv., 25, 294 (2007)
- Noue J, Laliberte G, Proulx D, J. Appl. Phycol., 4, 247 (1992)
- Janssen M, Tramper J, Mur LR, Wijffels RH, Biotechnol. Bioeng., 81(2), 193 (2003)
- Posten C, Engineering in Life Sciences, 9, 165 (2009)
- Barbosa MJ, Albrecht M, Wijffels RH, Biotechnol. Bioeng., 83(1), 112 (2003)
- Contreras A, Garcia F, Molina E, Merchuk J, Biotechnol. Bioeng., 60, 317 (2000)
- Kwon JH, Rogner M, Rexroth S, J. Biotechnol., 162(1), 156 (2012)
- Oie S, Obayashi A, Yamasaki H, Furukawa H, Kenri T, Takahashi M, Kawamoto K, Makino S, Biological and Pharmaceutical Bulletin, 34, 1325 (2011)
- Czitrom V, American Statistician, 126 (1999)
- Tang HY, Chen M, Ng KYS, Salley SO, Biotechnol. Bioeng., 109(10), 2468 (2012)
- Havlik I, Lindner P, Scheper T, Reardon KF, Trends in Biotechnology, 31(7), 406 (2013)
- Shcolnick S, Shaked Y, Keren N, Biochim. Biophys. Acta (BBA)-Bioenergetics, 1767, 814 (2007)
- Zhang X, Liu S, Chen X, Ener. Procedia, 11, 2121 (2011)
- Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB, Protoplasma, 227, 129 (2006)