화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.7, 1233-1236, July, 2014
Effect of shear stress on the growth of continuous culture of Synechocystis PCC 6803 in a flat-panel photobioreactor
E-mail:,
The effect of hydrodynamic forces generated by air bubbles on cell growth of continuous culture of Synechocystis PCC 6803 was studied in a flat-panel photobioreactor. Keeping all relevant parameters constant enables the optimization of individual parameters, for which a continuous cultivation approach has significant advantages. Continuous culture of Synechocystis PCC 6803 was cultivated under different gas velocities from 0.022 m s^(-1) up to 0.128 m s^(-1). Based on direct determination of effective growth rate at constant cell densities, cell damage due to shear stress induced by the increasing gas velocity at the sparger was directly observed. A significant decrease of effective growth rate was observed at gas velocity of 0.085 m s^(-1) generated at the gas flow rate of 200 ml min^(-1), indicating cell damage by shear stress. Optimization of gas volume and the development of an effective aeration system corresponding to a given reactor setup is important to realize a reliable cell growth.
  1. Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R, J. Photochem. Photobiol. C: Photochemistry Reviews, 11, 101 (2010)
  2. Dutta D, De D, Chaudhuri S, Bhattacharya SK, Microb. Cell Fact., 4, 36 (2005)
  3. Esper B, Badura A, Rogner M, Trends in Plant Science, 11, 543 (2006)
  4. Vijayendran B, Journal of Business Chemistry, 7, 109 (2010)
  5. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Science, 311, 484 (2006)
  6. Demirbas A, Prog. Energy Combust. Sci., 33, 1 (2007)
  7. Chisti Y, Biotechnol. Adv., 25, 294 (2007)
  8. Noue J, Laliberte G, Proulx D, J. Appl. Phycol., 4, 247 (1992)
  9. Janssen M, Tramper J, Mur LR, Wijffels RH, Biotechnol. Bioeng., 81(2), 193 (2003)
  10. Posten C, Engineering in Life Sciences, 9, 165 (2009)
  11. Barbosa MJ, Albrecht M, Wijffels RH, Biotechnol. Bioeng., 83(1), 112 (2003)
  12. Contreras A, Garcia F, Molina E, Merchuk J, Biotechnol. Bioeng., 60, 317 (2000)
  13. Kwon JH, Rogner M, Rexroth S, J. Biotechnol., 162(1), 156 (2012)
  14. Oie S, Obayashi A, Yamasaki H, Furukawa H, Kenri T, Takahashi M, Kawamoto K, Makino S, Biological and Pharmaceutical Bulletin, 34, 1325 (2011)
  15. Czitrom V, American Statistician, 126 (1999)
  16. Tang HY, Chen M, Ng KYS, Salley SO, Biotechnol. Bioeng., 109(10), 2468 (2012)
  17. Havlik I, Lindner P, Scheper T, Reardon KF, Trends in Biotechnology, 31(7), 406 (2013)
  18. Shcolnick S, Shaked Y, Keren N, Biochim. Biophys. Acta (BBA)-Bioenergetics, 1767, 814 (2007)
  19. Zhang X, Liu S, Chen X, Ener. Procedia, 11, 2121 (2011)
  20. Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB, Protoplasma, 227, 129 (2006)