화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.3, 972-978, May, 2014
Effect of ambient condition for coaxial dielectric barrier discharge reactor on CO2 reforming of CH4 to syngas
E-mail:
A coaxial dielectric barrier discharge reactor was used for the CO2 reforming of CH4 to syngas. The reactor was operated under two ambient conditions for comparison, namely, immersion in electrical insulating oil and total exposure in an air ambient. Immersion of the reactor in insulating oil increased the electrical power efficiency into the generation of plasma discharge due to the prevention of micro-arcing on the reactor surface. Operation in the insulating oil bath showed higher conversion and selectivity of major reactants and products rate than operation in an air ambient.
  1. Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1 (1999)
  2. Rostrup-Nielsen JR, Catal. Today, 63(2-4), 159 (2000)
  3. Zhou LM, Xue B, Kogelschatz U, Eliasson B, Energy Fuels, 12(6), 1191 (1998)
  4. Tao XM, Bai MG, Li XA, Long HL, Shang SY, Yin YX, Dai XY, Prog. Energy Combust. Sci., 37(2), 113 (2011)
  5. Wang Q, Cheng Y, Jin Y, Catal. Today, 148(3-4), 275 (2009)
  6. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC, J. Phys. D-Appl. Phys., 44, 274007 (2011)
  7. Martinez R, Romero E, Guimon C, Bilbao R, Appl. Catal. A: Gen., 274(1-2), 139 (2004)
  8. Pompeo F, Nichio NN, Ferretti OA, Resasco D, Int. J. Hydrog. Energy, 30(13-14), 1399 (2005)
  9. Luna AEC, Iriarte ME, Appl. Catal. A: Gen., 343(1-2), 10 (2008)
  10. Liu DP, Lau R, Borgna A, Yang YH, Appl. Catal. A: Gen., 358(2), 110 (2009)
  11. Shang RJ, Guo XN, Mu SF, Wang YY, Jin GQ, Kosslick H, Schulz A, Guo XY, Int. J. Hydrog. Energy, 36(8), 4900 (2011)
  12. Tao XM, Qi FW, Yin YP, Dai XY, Int. J. Hydrog. Energy, 33(4), 1262 (2008)
  13. Tao XM, Bai MG, Wu QY, Huang ZJ, Yin YX, Dai XY, Int. J. Hydrog. Energy, 34(23), 9373 (2009)
  14. Le H, Lobban LL, Mallinson RG, Catal. Today, 89(1-2), 15 (2004)
  15. Li DH, Li X, Bai MG, Tao XM, Shang SY, Dai XY, Yin YX, Int. J. Hydrog. Energy, 34(1), 308 (2009)
  16. Indarto A, Choi JW, Lee H, Song HK, Energy, 31(14), 2986 (2006)
  17. Li Y, Xu GH, Liu CJ, Eliasson B, Xue BZ, Energy Fuels, 15(2), 299 (2001)
  18. Yao SL, Nakayama A, Suzuki E, AIChE J., 47(2), 419 (2001)
  19. Yao SL, Nakayama A, Suzuki E, AIChE J., 47(2), 413 (2001)
  20. Song HK, Lee H, Choi JW, Na BK, Plasma Chem. Plasma Process., 24(1), 57 (2004)
  21. Kim TK, Lee WG, J. Ind. Eng. Chem., 18(5), 1710 (2012)
  22. Kundu SK, Kennedy EM, Gaikwad VV, Molloy TS, Dlugogorski BZ, Chem. Eng. J., 180, 178 (2012)
  23. Tu X, Whitehead JC, Appl. Catal. B: Environ., 125, 439 (2012)
  24. Shao T, Zhang C, Long KH, Zhang DD, Wang J, Yan P, Zhou YX, Appl. Surf. Sci., 256(12), 3888 (2010)
  25. Chen X, Marquez M, Rozak J, Marun C, Luo J, Suib SL, Hayashi Y, Matsumoto H, J. Catal., 178(1), 372 (1998)
  26. Brock SL, Shimojo T, Suib SL, Hayashi Y, Matsumoto H, Res. Chem. Intermed., 28, 13 (2002)
  27. Sarmiento B, Brey JJ, Viera IG, Gonzalez-Elipe AR, Cotrino J, Rico VJ, J. Power Sources, 169(1), 140 (2007)
  28. Rico VJ, Hueso JL, Cotrino J, Gonzalez-Elipe AR, J. Phys. Chem. A, 114(11), 4009 (2010)
  29. Hammer T, Kappes T, Baldauf M, Catal. Today, 89(1-2), 5 (2004)
  30. (a) Air properties, http://www.engineeringtoolbox.com/air-properties-d_156. html.; (b) Thermal conductivity common liquids, http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html.
  31. Wang Q, Yan BH, Jin Y, Cheng Y, Plasma Chem. Plasma Process., 29(3), 217 (2009)
  32. Huang AM, Xia GG, Wang JY, Suib SL, Hayashi Y, Matsumoto H, J. Catal., 189(2), 349 (2000)