화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.3, 870-880, May, 2014
A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA)
E-mail:
In the present study, response surface methodology (RSM) and artificial neural network (ANN) were used to develop an approach for the evaluation of heavy metal adsorption process. LECA was used as a green and low cost adsorbent to remove Cu2+ from aqueous solution in batch system. The effect of the operational parameters such as initial pH, temperature, initial Cu2+ concentration, and sorbent dosage was studied using Central Composite Face (CCF) design. Same design was also utilized to obtain a training set for ANN. A comparison between the model results and experimental data gave a high correlation coefficient (R2ANN = 0:962, R2RSM = 0:941) and showed that two models were able to predict Cu2+ removal by LECA. The Langmuir and Freundlich isotherm models were applied to the equilibrium data at different temperatures. The results revealed that the Freundlich isotherm fitted better than the Langmuir isotherm. The Cu2+ adsorption kinetic was well described by the pseudo-second order kinetic model. The rate of Cu2+ removal was controlled by film diffusion and intra-particle diffusion. The thermodynamic studies proved that Cu2+ removal was physical, spontaneous, feasible, endothermic, and random process.
  1. Chuah TG, Jumasiah A, Azni I, Katayon S, Choong SYT, Desalination, 175(3), 305 (2005)
  2. Papandreou A, Stournaras CJ, Panias D, J. Hazard. Mater., 148(3), 538 (2007)
  3. Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL, J. Hazard. Mater., 80(1-3), 33 (2000)
  4. Ozer A, Gurbuz G, Calimli A, Korbahti BK, Chem. Eng. J., 146(3), 377 (2009)
  5. Khosravi J, Alamdari A, J. Hazard. Mater., 166(2-3), 695 (2009)
  6. Voglar D, Lestan D, J. Hazard. Mater., 180(1-3), 152 (2010)
  7. Topuz B, Macit M, Environ. Monitoring Assessment, 173, 709 (2011)
  8. Molinari R, Argurio P, Poerio T, Sep. Purif. Technol., 70(2), 166 (2009)
  9. Wang S, Terdkiatburana T, Tade MO, Sep. Purif. Technol., 62(1), 64 (2008)
  10. Ayar A, Mercimek B, Kara H, Cengeloglu Y, Sep. Purif. Technol., 28(1), 25 (2002)
  11. Ozcimen D, Ersoy-Mericboyu A, J. Hazard. Mater., 168(2-3), 1118 (2009)
  12. Pamukoglu MY, Kargi F, Process Biochem., 41, 1047 (2006)
  13. Mahmoud ME, Al-Bishri HM, Chem. Eng. J., 166(1), 157 (2011)
  14. Mahmoud ME, Desalination, 266(1-3), 119 (2011)
  15. Mahmoud ME, Yakout AA, Abdel-Aal H, Osman MM, Bioresour. Technol., 106, 125 (2012)
  16. Saka C, Sahin O, Kucuk MM, Int. J. Environ. Sci. Tech., 9, 79 (2012)
  17. Cojocaru C, Diaconu M, Cretescu I, Savi’c J, Vasi’c V, Colloids Surf. A: Physicochem. Eng. Asp., 335, 181 (2009)
  18. Malakootian M, Nouri J, Hossaini H, Int. J. Environ. Sci. Tech., 6(2), 183 (2009)
  19. Montgomery DC, Design and Analysis of Experiments, 7th ed., John Wiley and Sons, New York, 2008. (2008)
  20. Sahan T, Ceylan H, Sahiner N, Aktas N, Bioresour. Technol., 101(12), 4520 (2010)
  21. Preetha B, Viruthagiri T, J. Hazard. Mater., 143(1-2), 506 (2007)
  22. Turan NG, Mesci B, Ozgonenel O, Chem. Eng. J., 173(1), 98 (2011)
  23. Prakash N, Manikandan SA, Govindarajan L, Vijayagopal V, J. Hazard. Mater., 152(3), 1268 (2008)
  24. Jaafarzadeh N, Ahmadi M, Amiri H, Yassin MH, Martinez SS, J. Taiwan Institute of Chem. Eng., 43, 873 (2012)
  25. Yetilmezsoy K, Demirel S, J. Hazard. Mater., 153(3), 1288 (2008)
  26. Bingol D, Hercan M, Elevli S, Kilic E, Bioresour. Technol., 112, 111 (2012)
  27. Gillman GP, Sumpter EA, Aust. J. Soil Res., 24, 61 (1986)
  28. Yetilmezsoy K, Demirel S, Vanderbei RJ, J. Hazard. Mater., 171(1-3), 551 (2009)
  29. Vazquez G, Calvo M, Freire MS, Gonzalez-Alvarez J, Antorrena G, J. Hazard. Mater., 172(2-3), 1402 (2009)
  30. Cornell JA, How to Apply Response Surface Methodology, 2nd ed., American Society for Quality Control, Wisconsin, 1990. (1990)
  31. Bayraktar E, Process Biochem., 37, 169 (2001)
  32. Myers RH, Montgomery DC, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed., John Wiley & Sons, USA, 2002. (2002)
  33. Khataee A, Khani A, Int. J. Chem. Reactor Eng., 7, 1 (2009)
  34. Nyquist RA, Kagel RA (Eds.), IR Spectra of Inorganic Compounds, Academic Press, New York, 1971. (1971)
  35. Hamsaveni DR, Prapulla SG, Divakar S, Process Biochem., 36, 1103 (2001)
  36. Weng CH, Tsai CZ, Chu SH, Sharma YC, Sep. Purif. Technol., 54(2), 187 (2007)
  37. Unlu N, Ersoz M, Sep. Purif. Technol., 52(3), 461 (2007)
  38. Wang XS, Li ZZ, Sun C, Desalination, 235(1-3), 146 (2009)
  39. Elliot HA, Huang CP, Water Res., 15, 849 (1981)
  40. Talhi MF, Cheriti A, Belboukharia N, Agha L, Roussel C, Desalination Water Treatment, 21, 323 (2010)
  41. Zhu B, Fan TX, Zhang D, J. Hazard. Mater., 153(1-2), 300 (2008)
  42. Shukla SR, Pai RS, Sep. Purif. Technol., 43(1), 1 (2005)
  43. Altin O, Ozbelge HO, Dogu T, J. Colloid Interface Sci., 198, 30 (1998)
  44. Langmuir I, J. Am. Chem. Soc., 38, 1916 (2221)
  45. Freundlich HMF, J. PHys, 57, 385 (1906)
  46. Dang VBH, Doan HD, Dang-Vu T, Lohi A, Bioresour. Technol., 100(1), 211 (2009)
  47. Ozer A, Ozer D, Process Biochem., 39, 2183 (2004)
  48. Sarkar M, Acharya PK, Bhattacharya B, J. Colloid Interface Sci., 266(1), 28 (2003)
  49. Weber JW, Morris JC, J. Sanitary Eng. Div., ASCE 89, 31 (1963)
  50. Kousha M, Daneshvar E, Dopeikar H, Taghavi D, Bhatnagar A, Chem. Eng. J., 179, 158 (2012)
  51. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)