화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.3, 268-273, June, 2014
무전해 니켈 도금된 탄소나노튜브의 전자파 차폐 특성
Electromagnetic Interference Shielding Characteristics of Electroless Nickel Plated Carbon Nanotubes
E-mail:
초록
본 연구에서는 탄소나노튜브의 전자파 차폐 성능을 향상시키고자 무전해 도금법을 이용하여 다중벽 탄소나노튜브에 니켈을 도입하였다. 니켈 도금된 다중벽 탄소나노튜브의 물리적 특성은 고분해능주사전자현미경, 열중량분석기, 표면저항측정기, 전자파 차폐능 분석기를 이용하여 분석하였다. 니켈 도금된 다중벽 탄소나노튜브의 전자파 차폐 효율은 800 MHz 영역에서 16 dB로 측정되었으며 활성화 처리된 다중벽 탄소나노튜브에 비하여 최대 1.6배 증가하였다. 또한, 평균 표면 저항 역시 70 Ω/sq로 활성화 처리된 다중벽 탄소나노튜브에 비하여 최대 56% 감소한 수치를 나타내었다. 이러한 결과는 니켈 도금 함량에 비하여 표면의 도금 형태가 전자파 차폐 효율에 더 많은 영향을 끼치기 때문인 것으로 판단된다.
In this study, multi-walled carbon nanotubes (MWCNT) were treated with nickel by electroless plating method for improving electromagnetic interference (EMI) shielding performance of MWCNT. The physical properties of electroless plated MWCNT were analyzed by using ultra-high resolution scanning electron microscope (UHR-SEM), thermogravimetry (TGA), sheet resistance analyzer and EMI shielding analyzer. EMI shielding efficiencies of nickel electroless plated MWCNT were measured to be 16 dB from 800 MHz band, which was 1.6 times increased compared to that of the activated MWCNT. Also, the average sheet resistance of nickel electroless plated MWCNT was measured to be 70 Ω/sq, which was 56% decreased compared to that of the activated MWCNT. This result could be attributed to the plating morphology on the surface of MWCNT. This result could be attributed to uniformity of plating morphology on the surface, which has more effect on EMI shielding efficiency than the amount of nickel plating.
  1. Ding D, Luo F, Zhow W, Ceram. Int., 39, 4281 (2013)
  2. Choi WK, Kim BJ, Park SJ, Carbon Lett., 14, 243 (2013)
  3. Han GY, Song DH, Bae JS, J. Ocean Eng. Technol., 23, 35 (2009)
  4. Lee JI, Jung HT, Korean Chem. Eng. Res., 46(1), 7 (2008)
  5. Hirsch A, Chem. Int. Ed., 41, 1853 (2002)
  6. Wagner HD, Lourie O, Feldman Y, Tenne R, Appl. Phys. Lett., 72, 188 (1998)
  7. Treacy MM, Ebbesen TW, Gibson JM, Nature, 381(6584), 678 (1996)
  8. Song YI, Lee JW, Kim TY, Jung HJ, Jung YC, Suh SJ, Yang CM, Carbon Lett., 14, 255 (2013)
  9. Park SJ, Jang YS, Rhee KY, J. Colloid Interface Sci., 245(2), 383 (2002)
  10. Tracy RP, Shawhan GJ, J. Mater. Perform., 29, 65 (1990)
  11. Park KY, Lee SB, Kim JB, Yi JW, Lee SK, Han JH, J. Korean Soc. Compos. Mater., 20, 43 (2007)
  12. Mallory GO, Hajudu JB, Electroless Plating : fundamentals and applications, 1-539, Cambridge University Press, Florida, USA (1990)
  13. Wilson PF, Ma MT, Adams JW, IEEE Trans. Electromagn. Compat., 30, 239 (1988)
  14. Thompson LH, Doraiswamy LK, Ind. Eng. Chem. Res., 38(4), 1215 (1999)
  15. Cho JH, Ko SG, Ahn YK, Song KC, Choi EJ, J. Korean Magn. Soc., 16, 163 (2006)
  16. Tian F, Li HP, Zhao NQ, He CN, Mater. Chem. Phys., 115(2-3), 493 (2009)
  17. Oh TS, Polym. Sci. Technol., 2(3), 179 (1991)
  18. Schelkunoff SA, Bell Syst. Tech. J., 13, 532 (1934)
  19. Kim HR, Fujimori K, Kim BS, Kim IS, Compos. Sci. Technol., 72, 1233 (2012)
  20. Gupta A, Choudhary V, Compos. Sci. Technol., 71, 1563 (2011)
  21. Thomassin JM, Jerome C, Pardoen T, Bailly C, Huyuen I, Detrembleur C, Mat. Sci. Eng. R., 74, 211 (2013)
  22. Liu X, Yin X, Kong L, Li Q, Liu Y, Duan W, Zhang L, Cheng L, Carbon, 68, 501 (2014)