화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.26, No.2, 149-158, May, 2014
Experimental and modeling study of viscoelastic behaviors of magneto-rheological shear thickening fluids
E-mail:,
Nowadays, both Magneto-rheological Fluid (MRF) and Shear Thickening Fluid (STF) have separately attracted considerable interest due to the fast reversible response to either external magnetic field or abrupt shearing loading. In this paper, we fabricated a combined phase of Magneto-rheological Shear Thickening Fluid (MRSTF), where the 25 wt% STF is applied as medium phase with the addition of varied fractions of iron particle. The investigation of the dynamic behavior of this novel material under oscillatory shear was launched in a parallel-plate rheometer. The relevance of the dynamic behavior to strain amplitude, frequency and external magnetic field were investigated and discussed. A four-parameter viscoelastic model was applied to reconstruct the mechanical behavior of the MRSTF under different working conditions, and the parameters were identified within the Matlab optimization algorithm. The comparison between the experimental data and the model prediction results indicated that the four-parameter model could predict viscoelastic material with desired accuracy. The MRSTF exhibits features of both components, while prone more to MRF with the inception of external field excitations.
  1. Cho KS, Ahn KH, Lee SJ, J. Rheol., 49(3), 747 (2005)
  2. Bender JW, Wagner NJ, J. Colloid Interface Sci., 172(1), 171 (1995)
  3. Brown E, Forman NA, Orellana CS, Zhang HJ, Maynor BW, Betts DE, DeSimone JM, Jaeger HM, Nat. Mater., 9(3), 220 (2010)
  4. Carlson JD, Catanzarite DM, St. Clair KA, Fifth International Conference on ER Fluids, MR Suspensions and Associate Technology, University of Sheffield (1995)
  5. De Vicente J, Klingenberg DJ, Hidalgo-Alvarez R, Soft Matter, 7, 3701 (2011)
  6. Deshmukh SS, McKinley GH, Rheological Behavior of Magnetorheological Suspensions under Shear, Creep and Large Amplitude Oscillatory Shear (LAOS) flow, Proc. XIVth International Congress on Rheology, The Korean Society of Rheology, Seoul (2004)
  7. Dong SF, Lu KQ, Sun JQ, Rudolph K, IEEE T. Neur. Sys. Reh., 14, 55 (2006)
  8. Egres RG, Nettesheim F, Wagner NJ, J. Rheol., 50(5), 685 (2006)
  9. Fischer C, Braun SA, Bourban PE, Michaud V, Plummer CJG, Manson JAE, Smart Mater. Struct., 15, 1467 (2006)
  10. Gong XL, Xu YG, Xuan SH, Guo CY, Zong LH, Jiang WQ, J. Rheol., 56(6), 1375 (2012)
  11. Hyun K, Kim SH, Ahn KH, Lee SJ, J. Non-Newton. Fluid Mech., 107(1-3), 51 (2002)
  12. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Prog. Polym. Sci., 36, 1697 (2011)
  13. Jolly MR, Bender JW, Field responsive shear thickening uid US Patent Application Publication 2006/0231357 A1 (2006)
  14. Kalman DP, Microstructure and rheology of concentrated suspensions of near hard-sphere colloids, Ph.D. thesis, University of Delaware (2010)
  15. Kikuchi T, Otsuki K, Furusho J, Abe H, Noma J, Naito M, Advanced Robotics, 25, 1362 (2011)
  16. Kim SH, Sim HG, Ahn KH, Lee SJ, Korea-Aust. Rheol. J., 14(2), 49 (2002)
  17. Lakes R, Viscoelastic Materials, Cambridge University Press, New York (2009)
  18. Li WH, Du H, Guo NQ, Mater. Sci. Eng. A, 371, 9 (2004)
  19. Li WH, Du H, Chen G, Yeo SH, Guo NQ, Smart Mater. Struct., 11, 209 (2002)
  20. Li WH, Du HJ, Chen G, Yeo SH, Guo NQ, Rheol. Acta, 42(3), 280 (2003)
  21. Li WH, Zhou Y, Tian TF, Rheol. Acta, 49(7), 733 (2010)
  22. Liu YD, Lee J, Choi SB, Choi HJ, Silica-coated carbonyl iron microsphere based magnetorheological fluid and its damping force characteristics, Smart Mater Struct. 22, 065022 (2013)
  23. Ewoldt RH, Hosoi AE, McKinley GH, J. Rheol., 52(6), 1427 (2008)
  24. Milecki A, Hauke M, Mech. Syst. Sig. Pr., 28, 528 (2012)
  25. Neagu RC, Bourban PE, Manson JAE, Compos. Sci. Technol., 69, 515 (2009)
  26. Ng TSK, McKinley GH, Ewoldt RH, J. Rheol., 55(3), 627 (2011)
  27. Park BJ, Fang FF, Choi HJ, Soft Matter, 6, 5246 (2010)
  28. Renou F, Stellbrink J, Petekidis G, J. Rheol., 54(6), 1219 (2010)
  29. Rankin PJ, Horvath AT, Klingenberg DJ, Rheol. Acta, 38(5), 471 (1999)
  30. Russo R, Terzo M, Smart Mater. Struct., 20, 115003 (2011)
  31. Sim HG, Ahn KH, Lee SJ, J. Rheol., 47(4), 879 (2003)
  32. Sun WX, Yang YR, Wang T, Liu XX, Wang CY, Tong Z, Polymer, 52(6), 1402 (2011)
  33. Li X, Wang SQ, Wang XR, J. Rheol., 53(5), 1255 (2009)
  34. Yu T, Jiang JL, Meng YG, Wen SZ, Appl. Phys. Let., 97, 151904 (2010)
  35. Zhang X, Li W, Gong XL, Study on magnetorheological shear thickening fluid, Smart Mater. Struct. 17, 015051 (2008)
  36. Zhu G, Liu X, Theory of viscoelasticity, The Press of the University of Science & Technology of China, Hefei (1996)
  37. Zhu XC, Jing XJ, Li C, J. Intel. Mat. Syst. Str., 23, 839 (2012)