화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.2, 209-214, April, 2014
SDA 방법으로 제조한 오일샌드 역청의 말텐에 대한 유변학적 거동 및 비뉴톤 특성
The Rheological Behaviors and Non-Newtonian Characteristics of Maltenes Made by SDA Method from Oil Sands Bitumen
E-mail:
초록
SDA (Solvent deasphalting)를 이용한 오일샌드 역청의 부분경질화 공정을 개발하기 위해 수행된 본 연구에서는 말텐에 대하여 포화탄화수소 용매의 종류, 용매 투입 비율, 온도, 전단속도 등에 따른 유변학적 거동과 비뉴톤 특성을 살펴보았다. 오일샌드 역청은 전단속도가 50 sec-1이고, 온도가 25∼85 ℃인 조건에서 800∼150000 mPa·s의 겉보기 점도를 보이며, 35 ℃ 이하에서는 0.1∼0.3 Pa의 항복응력을 나타냈다. 오일샌드와 말텐은 모두 Pseudoplastic의 특성을 보이고 포화탄화수소 용매의 탄소 수가 낮아질수록 말텐의 겉보기 점도는 감소하였다. 겉보기 점도와 온도와의 상관관계는 Guzman-Andrade식으로 나타낼 수 있었으며, n-Pentane의 투입 비율이 커짐에 따라 말텐의 점도가 감소하였다. 또한 온 도가 높아질수록 말텐은 뉴톤 유체에 접근하였고, 용매로 사용된 포화탄화수소의 탄소 수가 작아질수록 비뉴톤 성질은 증가하였다.
In this paper, the rheological behaviors and non-Newtonian characteristics of maltenes which is effected by hydrocarbon solvent type, solvent mixing ratio, temperature and shear rate was measured and compared with oil sands bitumen. Maltenes was made by SDA (solvent deasphalting) method from oil sands bitumen. Oil sands bitumen had apparent viscosities of 800∼150000 mPa·s measured at a shear rate of 50 sec-1 in the range of 25∼85 ℃ and showed yield stress of 0.1∼0.3 Pa at the temperatures below 35 ℃. All the oil sands bitumen and maltenes exhibited a shear-thinning, i.e. pseudoplastic behavior and apparent viscosity of maltenes decreased with decreasing carbon numbers of hydrocarbon solvent. The change in apparent viscosity with temperature could be described by the simple Guzman-Andrade equation, and maltene viscosities were decreased as the mixing ratio of n-pentane was raised. Also, all maltenes approached to Newtonian fluid as temperature were increased. the degree of pseudoplasticity was enhanced with decreasing carbon number of solvent.
  1. Yeon HS, Woo CS, Hoon KK, Appl. Chem., 12(2), 361 (2008)
  2. Kim KH et al., J. Energy Eng., 17, 38 (2008)
  3. Nho NS et al., Development of next-generation integrated upgrading process for extra-heavy oil fractions., Korea Institute of Energy Research (2009)
  4. Robinson PR, Dolbear GE, Practical Advances in Petroleum Processing., Springer New York, 1, 178 (2006)
  5. Fernandes FAN, Teles UM, Fuel Process. Technol., 88(2), 207 (2007)
  6. Rana MS, Samano V, Ancheyta J, Diaz JAI, Fuel, 86(9), 1216 (2007)
  7. Nho NS et al., Feasibility Study about Upgrading Package Process for the Production of Synthetic Crude Oil & Petrochemical Feedstocks from Low-Cost Heavy Oils., Korea Institute of Energy Research (2012)
  8. Samano V, Guerrero F, Ancheyta J, Trejo F, Diaz JAI, Catal. Today, 150(3-4), 264 (2010)
  9. Hasan MA, Shaw JM, Energy Fuels, 24, 6417 (2010)
  10. Bazyleva AB, Hasan MAA, Fulem M, Becerra M, Shaw JM, Appl. Chem. Eng., 55, 1389 (2010)
  11. Hasan SW, Ghannam MT, Esmail N, Fuel, 89(5), 1095 (2010)
  12. Khan MR, Energy Sources, 18(4), 385 (1996)
  13. Lee JM, Study on the properties of deasphalted oil (DAO) and DAO/solvent separation, MS Thesis Korea University (2012)
  14. Annual Books of ASTM Standards, D 3279-97 : Standard Test Method for n-Heptane Insolubles (2001)