화학공학소재연구정보센터
Clean Technology, Vol.20, No.1, 57-63, March, 2014
낮은 수소농도에서 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 스팀과 CO2에 대한 영향
Catalytic Performance for the Production of Synthetic Natural Gas (SNG) on the Commercial Catalyst in Low Hydrogen Concentration; Influence of Steam and CO2
E-mail:
초록
본 연구에서는 합성천연가스(synthetic natural gas, SNG)를 생산하기 위한 공정 개발을 위해 H2/CO 비가 낮은 합성가스를 이용하여 스팀과 함께 메탄화 반응을 수행하였다. 본 실험과 같은 조건에서는 수성가스 전환반응과 메탄화 반응이 동시에 일어나며, 스팀양이 적을 경우 촉매의 비활성화가 발생할 수 있다. 때문에, 스팀 양에 대한 반응특성을 수행하였으며, 더불어 고농도의 CO2가 함유된 합성가스에 대한 메탄화 반응특성도 함께 고찰하였다. 그 결과, 스팀의 공급으로 인하여 촉매 층내의 온도를 낮출 수 있었으며, 메탄화 반응과 수성가스전환반응이 동시에 일어났음을 확인할 수 있었다. 고농도의 CO2가 함유된 합성가스의 메탄화 반응에서는 조금 낮은 메탄 수율을 보였지만, 장기운전(1,000 h) 결과로부터 본 연구에서 수행한 합성가스의 조건을 SNG 공정에 적용이 가능할 것으로 확인되었다.
In this work, we performed the methanation with steam and synthesis gas of a low H2/CO ratio to develop a process for producing SNG (synthetic natural gas). In this experiment conditions, the water gas shift reaction and the methanation reaction take place at the same time, and insufficient supply of steam might cause the deactivation of the catalyst. Therefore, the reaction characteristics with the amount of steam was performed, and the methanation on syngas containing CO2 of the high concentration were studied. As a result, the temperature in the catalyst bed decreased by the supply of steam, and the methanation and the water gas shift reaction occurred at the same time. Although methane yield slightly decreased at the methanation using syngas containing CO2 of the high concentration, the long-term operation (1,000 h) in the experimental conditions of this study indicates that this condition is suitable for the new commercial scale SNG process.
  1. Yoo YD, Kim SH, Yun YS, Jin GT, Korean Ind. Chem. News, 12(3), 38 (2009)
  2. Ding Y, Han W, Chai Q, Yang S, Shen W, Energy Policy, 55, 445 (2013)
  3. GPGP, “Practical Experience Gained during the First Twenty Years of Operation of the Great Plains Gasification Plant and Implications for Future Projects,” Technical Report, Dakota Gasification Company Prepared for US Department of Energy -Office of Fossil Energy (2006)
  4. Keeler C, Lynch T, “POSCO Gwangyang Project for Substitute Natural Gas (SNG),” Gasification Technologies Conference Washington, DC, November (2010)
  5. Nagase S, Takami S, Hirayama A, Hirai Y, Catal. Today, 45(1-4), 393 (1998)
  6. Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel, 89(8), 1763 (2010)
  7. Haldor Topsoe, “From Coal to Substitute Natural Gas Using TREMP,” Technical Report, Haldor Topsoe (2008)
  8. Kim JH, Kang SH, Ryu JH, Lee SK, Kim SH, Kim MH, Lee DY, Yoo Y, Byun C, Lim H, Korean Chem. Eng. Res., 49(4), 491 (2011)
  9. Kim S, Yoo Y, Kang S, Ryu J, Kim J, Kim M, Koh D, Lee H, Kim G, Kim H, Clean Technol., 19(2), 156 (2013)
  10. Cortes CG, Tzimas E, Peteves SD, “Technologies for Coal based Hydrogen and Electricity Co-production Power Plants with CO2 Capture,” JRC Scientific and Technical Reports, EUR 23661 EN (2009)
  11. Hoehlein B, Menzer R, Range J, Appl. Catal., 1(3-4), 125 (1981)
  12. Vitasari CR, Jurascik M, Ptasinski KJ, Energy, 36(6), 3825 (2011)
  13. Kim JH, Kang SH, Young DY, Baik JH, Koh DJ, Theories Appl. Chem. Eng., 17(2), 1688 (2011)
  14. Baik JH, Yoo YD, Kang SH, Koh DJ, Kim JH, Kim SH, Ryu JH, “Apparatus and Method for Producing Synthetic Natural Gas Using Synthesis Gas of Low H2/CO Ratio,” KR. Patent No. 1020120153905 (2012)