화학공학소재연구정보센터
Clean Technology, Vol.20, No.1, 28-34, March, 2014
나노 크기의 타이타니아 담체를 활용한 Pd-Cu 촉매의 수중 질산성 질소 저감 반응에의 적용
Catalytic Nitrate Reduction in Water over Nanosized TiO2 Supported Pd-Cu Catalysts
E-mail:
초록
본 연구에서는 나노 크기의 결정 구조를 가진 타이타니아 담체를 용매열합성법(solvothermal method)을 활용하여 합성한 후 팔라듐과 구리를 담지한 촉매를 제조하였다. 제조된 촉매를 수중 질산성 질소 저감 반응에 적용한 결과, 타이타니아 담체의 결정 크기가 반응 활성에 영향을 미치는 것이 확인되었다. 결정 크기가 작은 담체를 활용한 촉매가 더 빠른 속도로 질산성 질소를 저감하였지만, 반응 중 pH가 높게 형성되어 질소 선택도가 매우 낮은 현상을 보였다. 이를 해결하기 위해 pH 완충제인 이산화탄소를 공급하여 질소 선택도를 약 60% 증가시켰다. 상기에 언급한 촉매를 대상으로 질소 흡-탈착, X-ray diffraction (XRD), H2-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) 등의 다양한 특성화 분석을 수행하여 촉매의 반응활성과 물성간의 상관관계에 대해 조사하였다.
In this study, we synthesized TiO2 supports with nanosized crystalline structure by solvothermal method and prepared TiO2 supported Pd-Cu catalysts. It was shown that the crystalline size of TiO2 support in the catalyst influenced on the catalytic activity of nitrate reduction in water. The catalyst with the smaller crystalline size of TiO2 support presented faster nitrate reduction rate, but had low nitrogen selectivity due to high pH environment of reaction medium during the reaction. Through injection of carbon dioxide as a pH buffer, the nitrogen selectivity increased by about 60%. Furthermore, we investigated that the relationships between the catalytic performance and the physicochemical properties of the prepared catalysts characterized by N2 adsoprtion-desorption, X-ray diffraction (XRD), H2-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS).
  1. Bae S, Jung J, Lee W, Chem. Eng. J., 232, 327 (2013)
  2. Lee GH, Lee G, Clean Technol., 15(4), 280 (2009)
  3. Soares OSGP, Jardim EO, Reyes-Carmona A, Ruiz-Martinez J, Silvestre-Albero J, Rodriguez-Castellon E, Orfao JJM, Sepulveda-Escribano A, Pereira MF, J. Colloid Int. Sci., 369, 294 (2012)
  4. Bahri MA, Calvo L, Gilarranz MA, Rodriguez JJ, Epron F, “Activated Carbon Supported Metal Catalysts for Reduction of Nitrate in Water with High Selectivity towards N2,” Appl. Catal., B, 138-139, 141-148 (2013)
  5. Yoshinaga Y, Akita T, Mikami I, Okuhara T, J. Catal., 207(1), 37 (2002)
  6. Barrabes N, Just J, Dafinov A, Medina F, Fierro JLG, Sueiras JE, Salagre P, Cesteros Y, Appl. Catal. B: Environ., 62(1-2), 77 (2006)
  7. Ryoo W, Clean Technol., 15(3), 194 (2009)
  8. Kim MS, Chung SH, Lee MS, Lee DW, Lee KY, Clean Technol., 19(1), 65 (2013)
  9. Chaplin BP, Roundy E, Guy KA, Shapley JR, Werth CJ, Environ. Sci. Technol., 40, 3075 (2006)
  10. Garron A, Epron F, Wat. Res., 39, 3073 (2005)
  11. Barrabes N, Dafinov A, Medina F, Sueiras JE, Catal. Today, 149(3-4), 341 (2010)
  12. Prusse U, Hahnlein M, Daum J, Vorlop KD, Catal. Today, 55(1-2), 79 (2000)
  13. Epron F, Gauthard F, Pineda C, Barbier J, J. Catal., 198(2), 309 (2001)
  14. Rodriguez R, Pfaff C, Melo L, Betancourt P, “Characterization and Catalytic Performance of a Bimetallic Pt-Sn/HZSM-5 Catalyst Used in Denitration of Drinking Water,” Catal. Today, 107-108, 100-105 (2005)
  15. Marchesini FA, Irusta S, Querini C, Miro E, Catal. Commun., 9, 1021 (2008)
  16. Dodouche I, Barbosa DP, Rangel MD, Epron F, Appl. Catal. B: Environ., 93(1-2), 50 (2009)
  17. Gasparovicova D, Kralik M, Hronec M, Biffis A, Zecca M, Corain B, J. Mol. Catal. A: Chem., 244, 285 (2006)
  18. Gasparovicova D, Kralik M, Hronec M, Vallusova Z, Vinek H, Corain B, J. Mol. Catal. A-Chem., 264(1-2), 93 (2007)
  19. Prusse U, Vorlop KD, J. Mol. Catal. A-Chem., 173(1-2), 313 (2001)
  20. Strukul G, Gavagnin R, Pinna F, Modaferri E, Perathoner S, Centi G, Marella M, Tomaselli M, Catal. Today, 55(1-2), 139 (2000)
  21. Lemaignen L, Tong C, Begon V, Burch R, Chadwick D, Catal. Today, 75(1-4), 43 (2002)
  22. Epron F, Gauthard F, Barbier J, Appl. Catal. A: Gen., 237(1-2), 253 (2002)
  23. Palomares AE, Prato JG, Rey F, Corma A, J. Catal., 221(1), 62 (2004)
  24. Wada K, Hirata T, Hosokawa S, Iwamoto S, Inoue M, Catal. Today, 185(1), 81 (2012)
  25. Kim MS, Chung SH, Yoo CJ, Lee MS, Cho IH, Lee DW, Lee KY, “Catalytic Reduction of Nitrate in Water over Pd-Cu/TiO2 Catalyst: Effect of the Strong Metal-Support Interaction (SMSI) on the Catalytic Activity,” Appl. Catal., B, 142-143, 354-361 (2013)
  26. Weerachawanasak P, Praserthdam P, Arai M, Panpranot J, J. Mol. Catal. A-Chem., 279(1), 133 (2008)
  27. Kongsuebchart W, Praserthdam P, Panpranot J, Sirisuk A, Supphasrirongjaroen P, Satayaprasert C, J. Cryst. Growth, 297(1), 234 (2006)
  28. Payakgul W, Mekasuwandumrong O, Pavarajarn V, Praserthdam P, Ceram. Int., 31, 391 (2005)
  29. Kapoor MP, Ichihashi Y, Kuraoka K, Matsumura Y, J. Mol. Catal. A-Chem., 198(1-2), 303 (2003)
  30. Shen WJ, Okumura M, Matsumura Y, Haruta M, Appl. Catal. A: Gen., 213(2), 225 (2001)
  31. Pillai SC, Periyat P, George R, McCormack DE, Seery MK, Hayden H, Colreavy J, Corr D, Hinder SJ, J. Phys. Chem. C, 111, 1605 (2007)
  32. Monshi A, Foroughi MR, Monshi MR, World J. Nano Sci. Eng., 2, 154 (2012)
  33. Witonska I, Karski S, Rogowski J, Krawczyk N, J. Mol. Catal. A-Chem., 287(1-2), 87 (2008)
  34. Jiang XY, Lu GL, Zhou RX, Mao JX, Chen Y, Zheng XM, Appl. Surf. Sci., 173(3-4), 208 (2001)
  35. Xiong LB, Li JL, Yang B, Yu Y, J. Nano Mat., 2012, 1 (2012)
  36. Weerachawanasak P, Mekasuwandumrong O, Arai M, Fujita SI, Praserthdam P, Panpranot J, J. Catal., 262(2), 199 (2009)
  37. D'Arino M, Pinna F, Strukul G, Appl. Catal. B: Environ., 53(3), 161 (2004)
  38. Sa J, Barrabes N, Kleymenov E, Lin C, Fottinger K, Safonova OV, Szlachetko J, Bokhoven JAV, Nachtegaal M, Urakawa A, Crespo GA, Rupprechter G, Catal. Sci. Tachnol., 2, 794 (2012)
  39. Sa J, Berger T, Fottinger K, Riss A, Anderson JA, Vinek H, J. Catal., 234(2), 282 (2005)
  40. Guo Y, Cheng J, Hu Y, Li D, Appl. Catal., B, 125, 21 (2012)