화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.1, 72-77, February, 2014
열전지용 FeS2 미세 분말의 제조 및 열적 안정성
Preparation and Thermal Stability of FeS2 Fine Powder for Thermal Battery
E-mail:
초록
FeS2 미세 입자가 열전지의 특성에 미치는 영향을 알아보고자, 볼밀법을 이용하여 미세화 입자를 제조하고 그 미세 구조 및 열안정성을 평가하였다. FeS2의 평균 입자크기와 입자분포는 볼밀 시간에 따라 변하였다. 평균 입자크기는 10 h 볼밀 처리 후, 98.4 μm에서 1.01 μm로 급격하게 감소하였다. 볼밀 시간이 증가할수록, 입자의 응집이 증가하고 입자 크기의 분포가 넓어지기 때문에 평균 입자크기는 증가하였다. 결국, 170 h의 볼밀을 시행한 후에 가장 좁은 크기의 단일 입자 분포를 가지는 FeS2 미세 입자를 얻을 수 있었다. 한편, 입자가 분쇄됨에 따라 FeS2의 열 안정성은 불안정해졌으며, 미세 입자 사이즈의 활성화 에너지는 이전의 FeS2보다 27% 낮아졌다.
Microstructure and thermal stability of mechanically ball milled FeS2 were investigated. The average particle size and distribution of FeS2 powder were changed in two steps with the increased ball milling time. The average particle size drastically decreased from 98.4 μm to 1.01 and 0.89 μm after ball milling of 10 h and 30 h, respectively. However, the distribution was broad and a shoulder appeared at 2 μm because the pulverization was still in process at 10 h ball milling. After 60 h ball milling, the distribution became narrower. After ball milling of 120 h, the average particle size increased because of FeS2 particle agglomeration. Therefore, the particle size distribution became broaden again. Finally, after ball milling of 170 h, FeS2 with the narrowest size distribution can be obtained. Thermal stability of FeS2 was unstable as the FeS2 particle was pulverized. Therefore, the activation energy of the fine size particles is 27% lower than that of the as-received FeS2.
  1. Lee TJ, Lee JD, Chang WC, J. Korean Ind. Eng. Chem., 14(4), 519 (2003)
  2. Park SK, Kim HC, Appl. Chem. Eng., 21(6), 680 (2010)
  3. Chung KW, Kim JM, Lee SB, Hong IK, Lee JD, Appl. Chem., 5(1), 327 (2001)
  4. Kang SW, Song HT, Min BH, Suh SS, Appl. Chem., 7(1), 321 (2003)
  5. Hyun JS, Lee SH, Rhim YJ, Min BM, Energy Eng. J., 13, 112 (2004)
  6. Lim HJ, Kim TY, Prospect. Ind. Chem., 5(6), 33 (2002)
  7. Kim SS, Lee CH, Park SW, Korean Chem. Eng. Res., 48(6), 784 (2010)
  8. Kim HS, Park YS, J. KOSAE., 15, 805 (1999)
  9. Jung MW, Ahn KH, Lee YH, Kim KP, Rhee JS, Park JT, Paeng KJ, Mircrochem. J., 70, 123 (2001)
  10. Zhao XS, Ma Q, Lu GQM, Energy Fuels, 12(6), 1051 (1998)
  11. Woo KJ, Kim SD, Lee SH, Korean Chem. Eng. Res., 45(3), 277 (2007)
  12. Kim JH, Ceramist., 10, 259 (1995)
  13. Guerra CF, Snijders JG, te Velde G, Baerends EJ, Theor. Chem. Acc., 99, 391 (1998)
  14. Seaton NA, Walton JPRB, Quirke N, Carbon., 27, 853 (1989)
  15. Park SJ, Jang YS, J. Korean Ind. Eng. Chem., 13(2), 166 (2002)
  16. Park SK, Kim HC, J. Korean Ind. Eng. Chem., 20(5), 561 (2009)
  17. An HH, KIGAS., 14, 35 (2010)
  18. Oh WC, Analytical Science & Technology., 13, 332 (2000)
  19. Kim TW, Moon H, J. Adv. Eng. Tech., 1, 375 (2008)
  20. Holland BJ, Hay JN, Polymer, 42(16), 6775 (2001)
  21. Gilman JW, VanderHart DL, Bismaleimides T, Thermal Decomposition Chemistry of Poly(vinyl alcohol), Fire and Polymers II : Materials and Test for Hazard, G. L. Nelson, American Chemical Society, Washington DC, 599, 161 (1995)
  22. Jhung SH, Chang JS, J. Korean Ind. Eng. Chem., 20(2), 117 (2009)
  23. Cho YH, Na JG, Kim SS, Kim JG, Chung SH, J. Korean Ind. Eng. Chem., 44, 307 (2006)